首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The relationship between cytosolic concentrations of Ca2+ (Ca) and Na+ (Na) were studied in preparations of rat submandibular and pancreatic acini loaded with the Ca2+-sensitive dye Fura-2 or the Na+-sensitive dye SBFI. Pancreatic acini showed no changes in Na during either transient or persistent changes in Ca. Increases in Ca produced by exposure of submandibular gland acini to carbachol, a muscarinic cholinergic agonist, were followed by an increase in Na after a delay of 5–10 s. When Ca2+ stores were mobilized without Ca2+ influx Na also increased, but in acini loaded with BAPTA, a nonfluorescent Ca2+ chelator, the transient increase in Ca2+ caused by mobilization of stored Ca2+ was virtually abolished, as was the increase in Na. In the presence of ionomycin, increases in Ca were followed by increases in Na. Ca2+-dependent increases in Na were abolished in Na+-free buffer and by the presence of furosemide, a blocker of Na+-K+-2Cl cotransport. In other studies, extracellular ATP (ATPo) produced an increase in Ca and Na. The steady-state increase in Ca was reduced by increasing extracellular Na+ concentrations (Na) in dose-dependent fashion (IC50 = 16.4 ± 4.7 mM Na+). Likewise, increasing Na reduced ATPo-stimulated 45Ca2+ uptake at steady state (IC50 = 15.8 ± 9.2 mM Na+). Changing Na had no effect on carbachol-stimulated increases in Ca. We conclude that, in rat submandibular gland acini, ATPo promotes an increase in Ca and Na via a common influx pathway and that, under physiologic conditions, Na+ significantly limits the ATPo-stimulated increase in Ca. In the presence of carbachol, however, Na rises in Ca-dependent fashion in submandibular gland acini via stimulation of Na+-K+-2Cl cotransport. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Acid‐extrusion by active transport is important in metabolically active cancer cells, where it removes excess intracellular acid and sets the intracellular resting pH. Hypoxia is a major trigger of adaptive responses in cancer, but its effect on acid‐extrusion remains unclear. We studied pH‐regulation under normoxia and hypoxia in eight cancer cell‐lines (HCT116, RT112, MDA‐MB‐468, MCF10A, HT29, HT1080, MiaPaca2, HeLa) using the pH‐sensitive fluorophore, cSNARF‐1. Hypoxia responses were triggered by pre‐incubation in low O2 or with the 2‐oxoglutarate‐dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG). By selective pharmacological inhibition or transport‐substrate removal, acid‐extrusion flux was dissected into components due to Na+/H+ exchange (NHE) and Na+‐dependent HCO transport. In half of the cell‐lines (HCT116, RT112, MDA‐MB‐468, MCF10A), acid‐extrusion on NHE was the dominant flux during an acid load, and in all of these, bar one (MDA‐MB‐468), NHE‐flux was reduced following hypoxic incubation. Further studies in HCT116 cells showed that <4‐h hypoxic incubation reduced NHE‐flux reversibly with a time‐constant of 1–2 h. This was not associated with a change in expression of NHE1, the principal NHE isoform. Following 48‐h hypoxia, inhibition of NHE‐flux persisted but became only slowly reversible and associated with reduced expression of the glycosylated form of NHE1. Acid‐extrusion by Na+‐dependent HCO transport was hypoxia‐insensitive and comparable in all cell lines. This constitutive and stable element of pH‐regulation was found to be important for setting and stabilizing resting pH at a mildly alkaline level (conducive for growth), irrespective of oxygenation status. In contrast, the more variable flux on NHE underlies cell‐specific differences in their dynamic response to larger acid loads. J. Cell. Physiol. 228: 743–752, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The effects of altered external sodium and potassium concentrations on steady state, active Na+ + K+ transport in Ehrlich ascites tumor cells have been investigated. Membrane permeability to Na+ and K+, intracellular [Na+] and [K+], and membrane potential were measured. Active cation fluxes were calculated as equal and membrane potential were measured. Active cation fluxes were calculated as equal and opposite to the net, diffusional leak fluxes. Elevation of external K+ (6–60 Mm)by equivalent replacement of Na+ (154–91 mM) inhibits both active Na+ and K+ fluxes, but not proportionally. This results in a decrease of the coupling ratio (rp = -Jkp/J) as external K+ is increased. Elevation of external K+ (3–68 mM) at constant Na+ (92mM) inbibits J, but is without effect on J. The coupling ratio declines from 1.01 ± 0.14 to 0.07 ± 0.05, a 14-fold alteration. Reduction of external Na+ (154–25 mM) at constant K+ (6mM) depresses J, but is without effect on J. The coupling ratio increases from 0.63 ± 0.04 at 154 mM Na+ to 4.5 ± 2.04 at 25 mM Na+. The results of this investigation are consistent with the independent regulation of active cation fluxes by the transported species. Kinetic analysis of the data indicates that elevation of external sodium stimulates active sodium efflux by interacting at “modifier sites” at the outer cell surface. Similarly, external potassium inhibits active potassium influx by interaction at separate modifier sites.  相似文献   

4.
Caffeine contractures were induced after K+ -conditioning of skeletal muscles from pigs and mice. K+ -conditioning is defined as the partial depolarization caused by increasing external potassium (K) with [K+]×[Cl?] constant. Conditioning depolarizations that rendered muscles refractory to brief electrical stimulation still enhanced the contracture tension elicited by subsequent direct caffeine stimulation of sarcoplasmic reticulum (SR) calcium release. The effects of K+ -conditioning on caffeine-induced contractures of intact cell bundles reached a maximum at 15–30 mM K and then progressively declined at higher [K+]0. Conditioning with 30 mM K+ for 5 min, which inactivates excitation-contraction (EC) coupling in response to action potentials, both increased the magnitude of caffeine contractures 2–10-fold and shifted the contracture threshold toward lower caffeine concentrations. Enhanced sensitivity to caffeine was inhibited by dantrolene (20 μM) and its watersoluble analogue azumolene (150 μM). These drugs decreased caffeine-induced contractures following depolarization with 4–15 mM K+ to 25–50% of control tension. The inorganic anion perchlorate (CIO), which like caffeine potentiates twitches, increased caffeine-induced contractures ~? twofold after K+ -conditioning (>4 mM). The results suggest that CIO and dantrolene, in addition to caffeine, also influence SR calcium release either directly or by mechanism(s) subsequent to depolarization of the sarcolemma. Moreover, since CIO is known to shift the voltage-dependence of intramembrane charge movement, CIO may exert effects on the transverse-tubule voltage sensors as well as the SR. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Ca2+ signaling pathways are well studied in cardiac myocytes, but not in cardiac fibroblasts. The aim of the present study is to characterize Ca2+ signaling pathways in cultured human cardiac fibroblasts using confocal scanning microscope and RT‐PCR techniques. It was found that spontaneous intracellular Ca2+ (Ca) oscillations were present in about 29% of human cardiac fibroblasts, and the number of cells with Ca oscillations was increased to 57.3% by application of 3% fetal bovine serum. Ca oscillations were dependent on Ca2+ entry. Ca oscillations were abolished by the store‐operated Ca2+ (SOC) entry channel blocker La3+, the phospholipase C inhibitor U‐73122, and the inositol trisphosphate receptors (IP3Rs) inhibitor 2‐aminoethoxydiphenyl borate, but not by ryanodine. The IP3R agonist thimerosal enhanced Ca oscillations. Inhibition of plasma membrane Ca2+ pump (PMCA) and Na+–Ca2+ exchanger (NCX) also suppressed Ca oscillations. In addition, the frequency of Ca oscillations was reduced by nifedipine, and increased by Bay K8644 in cells with spontaneous Ca2+ oscillations. RT‐PCR revealed that mRNAs for IP3R1‐3, SERCA1‐3, CaV1.2, NCX3, PMCA1,3,4, TRPC1,3,4,6, STIM1, and Orai1‐3, were readily detectable, but not RyRs. Our results demonstrate for the first time that spontaneous Ca oscillations are present in cultured human cardiac fibroblasts and are regulated by multiple Ca2+ pathways, which are not identical to those of the well‐studied contractile cardiomyocytes. This study provides a base for future investigations into how Ca2+ signals regulate biological activity in human cardiac fibroblasts and cardiac remodeling under pathological conditions. J. Cell. Physiol. 223: 68–75, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
A cellular suspension from rat submandibular glands was exposed to different concentrations of NH4Cl, and the variations of the intracellular concentration of calcium ([Ca2+]i) and the intracellular pH (pHi) were measured using fura-2 and 2′,7′-bis-(2-carboxy-ethyl)-5(6)-carboxyfluorescein. More than 5 mmol/l NH4Cl significantly increased the [Ca2+]i without affecting the response to 100 µmol/l carbachol. When exposed to 1 and 5 mmol/l NH4Cl, the cells acidified immediately. At 30 mmol/l, NH4Cl first alkalinized the cells and the pHi subsequently dropped. This drop reflects the uptake of NH ions that dissociate to NH3 and H+ in the cytosol. These protons are exchanged for extracellular sodium by the Na+/H+ exchanger because the presence of an inhibitor of the exchanger in the medium increased the acidification induced by 1 mmol/l NH4Cl. Ouabain partly blocked the uptake of NH. In the combined presence of ouabain and bumetanide (an inhibitor of the Na+-K+-2Cl cotransporter), 1 mmol/l NH4Cl alkalinized the cells. The contribution of the Na/K ATPase and the Na+-K+-2Cl cotransporter in the uptake of NH was independent of the presence of calcium in the medium. Isoproterenol increased the uptake of NH by the cotransporter. Conversely, 1 mmol/l extracellular ATP blocked the basal uptake of NH by the cotransporter. This inhibition was reversed by extracellular magnesium or Coomassie Blue. It was mimicked by benzoyl-ATP but not by CTP, GTP, UTP, ADP, or ADPβS. ATP only slightly inhibited the increase of cyclic AMP (−22%) by isoproterenol but fully blocked the stimulation of the cotransporter by the β-adrenergic agonist. ATP increased the release of 3H-arachidonic acid from prelabeled cells but SK&F 96365, an imidazole-based cytochrome P450 inhibitor, did not affect the inhibition by ATP. It is concluded that the activation of a purinoceptor inhibits the basal and the cyclic AMP-stimulated activity of the Na+-K+-2Cl cotransporter. J. Cell. Physiol. 180:422–430, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

7.
The effects of H+ on the kinetics of α-aminoisobutyric acid (AIB) influx in Ehrlich ascites tumor cells have been investigated at different external Na+ concentrations. Elevation of [H+] in the presence of both high (154 mEq/l) and low (10 mEq/l) external Na+ leads to decreases in the maximum influx (J) and increases in the apparent Michaleis-Menten constant (K) for influx of AIB. In the virtual absence of external Na+ (0.96 ± 0.04 mEq/l), alterations in [H+] are without measurable effect on AIB flux. Furthermore, addition of AIB (10 mM) to cell suspensions (pH 5.90) stimulates H+ uptake by the cells in either the presence or absence of Na+. The data are consistent with two kinetic models for Na+-dependent amino acid transport: an order bireactant (Na+-binding necessary before AIB binding) system or a random bireactant system. Both models require that H+ serve as an alternative substrate for Na+. The consistency of the models was tested by fit to data from the present study (not used to evaluate the kinetic parameters) and by prediction of the pH dependence of Na+-dependent amino acid transport compared to earlier studies.  相似文献   

8.
Intracellular free Ca2+ (Ca) is an important regulator of many cellular activities; however, Ca2+ signaling is not well studied in human preadipocytes. The purpose of the present study was to characterize Ca2+ signal pathways using a confocal scanning technique and RT‐PCR. It was found that spontaneous Ca oscillations were observed in 12.1% preadipocytes, and number of cells with Ca2+ oscillations was increased to 47.9% by 1% fetal bovine serum. Ca oscillations were dependent on Ca2+ entry mainly via stored‐operated Ca2+ (SOC) entry. They were suppressed by the SOC entry channel blocker La3+, the phospholipase C (PLC) inhibitor U73122, the inositol trisphosphate receptor (IP3R) blocker 2‐amino‐ethoxydiphenyl borate, or the sarcoplasmic/endoplasmic reticulum Ca2+ pump (SERCA) inhibitors thapsigargin and cyclopiazonic acid, but not by ryanodine. The IP3R activator thimerosal increased Ca oscillations. In addition, the plasma membrane Ca2+ pump (PMCA) inhibitor carboxyeosin and Na+–Ca2+ exchanger (NCX) inhibitor Ni2+ both suppressed Ca2+ oscillations. RT‐PCR revealed that the mRNAs for IP3R1‐3, SERCA1,2, NCX3 and PMCA1,3,4, CaV1.2, and TRPC1,4,6, STIM1 and Orai1 (for SOC entry channels) were significant in human preadipocytes. The present study demonstrates that multiple Ca2+ signal pathways are present in human preadipocytes, and provides a basis for investigating how Ca2+ signals regulate biological and physiological activities of human preadipocytes. J. Cell. Physiol. 220: 765–770, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The expression of cystic fibrosis transmembrane conductance regulator (CFTR) in lymphocytes has been reported for nearly two decades; however, its physiological role remains elusive. Here, we report that co‐culture of lymphocytes with lung epithelial cell line, Calu‐3, promotes epithelial HCO production/secretion with up‐regulated expression of carbonic anhydrase 2 and 4 (CA‐2, CA‐4) and enhanced bacterial killing capability. The lymphocyte‐enhanced epithelial HCO secretion and bacterial killing activity was abolished when Calu3 cells were co‐cultured with lymphocytes from CFTR knockout mice, or significantly reduced by interfering with E‐cadherin, a putative binding partner of CFTR. Bacterial lipopolysaccharide (LPS)‐induced E‐cadherin and CA‐4 expression in the challenged lung was also found to be impaired in CFTR knockout mice compared to that of the wild‐type. These results suggest that the interaction between lymphocytes and epithelial cells may induce a previously unsuspected innate host defense mechanism against bacterial infection by stimulating epithelial HCO production/secretion, which requires CFTR expression in lymphocytes. J. Cell. Physiol. 227: 3887–3894, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Redistribution of acid‐base transporters is a crucial regulatory mechanism for many types of cells to cope with extracellular pH changes. In epithelial cells, however, translocation of acid‐base transporters ultimately leads to changes in vectorial transport of H+ and HCO. We have previously shown that the bicarbonate‐secreting epithelium of salivary ducts responds to changes of systemic acid‐base balance by adaptive redistribution of H+ and HCO transporters, thereby influencing the ionic composition and buffering capacity of saliva. However, the specific proteins involved in regulated vesicular traffic of acid‐base transporters are largely unknown. In the present study we have investigated the impact of Rab11 family members on the acidosis‐induced trafficking of the vacuolar‐type H+‐ATPase (V‐ATPase) in salivary duct cells in vitro using the human submandibular cell line of ductal origin HSG as an experimental model. The results show that Rab11b is expressed in salivary ducts and exhibits a significantly higher co‐localization with V‐ATPase than Rab11a and Rab25. We also show that Rab11 but not Rab25 interacts with the ε subunit of V‐ATPase. Extracellular acidosis up‐regulates Rab11b expression and protein abundance in HSG cells and causes translocation of the V‐ATPase from intracellular pools toward the plasma membrane. Loss‐of‐function experiments using specific siRNA either against Rab11b or against its effector Rip11 prevent acidosis‐induced V‐ATPase translocation. These data introduce Rab11b as a crucial regulator and Rip11 as mediator of acidosis‐induced V‐ATPase traffic in duct cells of submandibular gland. J. Cell. Physiol. 226: 638–651, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Influx of the K+ analogue Rb+ was measured through the ouabain-sensitive Na+/K+ pump and the ouabain-insensitive “leak” pathways in Cl? or NO in mature red cells from adult pigs and in reticulocytes naturally occurring in 7-day-old piglets. In reticulocytes, Rb+ influxes by the two pathways were of about equal magnitude in Cl? (13 and 10 mmoles/liter cells × hr) and at least 25-fold larger than in mature red cells (0.5 and 0.4 mmoles/liter cells × hr). In Na + media, a portion of the ouabain-insensitive “leak” flux of Rb+ was Cl? dependent (Rb+Cl? transport) as NO replacement reduced Rb+ influx by 90% in reticulocytes and by 40% in mature red cells. The sulfhydryl reagent N-ethylmaleimide (NEM) stimulated Rb+Cl? transport about twofold in reticulocytes and up to 13-fold in mature red cells. When reticulocytes matured to erythrocytes during in vitro incubation, about 90% of both ouabain-sensitive Rb+ pump and ouabain-insensitive Rb+Cl? influx were lost. In contrast, the NEM-stimulated Rb+Cl? transport changed much less throughout this period, suggesting an entity operationally but not necessarily structrually distinct from the basal Rb+Cl? transport. Although the experimental variability precluded a full assessment of significant changes in the small Na+/K+(Rb+) pump and Rb+Cl? fluxes in mature pig red cells kept for the same time period in vitro, Rb+ flux changes in reticulocytes appear to be maturational in nature, reflecting parallel activity transitions of Na+/K+ pump and Cl?-dependent K+ fluxes in vivo.  相似文献   

12.
Maximal rates of superoxide (O) release, and the cytochemical locales of peroxide staining in resident, elicited, and activated macrophages have been determined. Macrophages elicited into the peritoneum with either casein (1.2% w/v) or proteose-peptone (10.0% w/v) release about twice as much O as macrophages activated by infection of the animals with either Listeria monocytogenes, or Bacille Calmette-Guerin (BCG) followed by immune boosting with Purified Protein Derivative (PPD) (i.e., about 35 vs. 14–18 nmol O/min/107 cells). Macrophages elicited with thioglycollate (3.0% w/v) and resident macrophages produce negligible amounts of O upon stimulation with PMA. These data are compared with those reported by other investigators who used different procedures. A cytochemical procedure for localizing peroxide has been modified for use with murine macrophages. No production of H2O2 by macrophages is detected cytochemically in the absence of stimulation. Upon exposure to PMA, resident macrophages are still largely unresponsive. Approximately 20% of the casein elicited macrophages and BCG-PPD activated macrophages exhibit H2O2 staining, which is largely restricted to the cytoplasmic vesicles and channels induced by PMA in these cells. The only exception to this staining pattern is a small population (about 2%) of activated macrophages which exhibits H2O2 staining in the cytoplasmic vesicles and channels and on the plasmalemma as well.  相似文献   

13.
Media concentration of total soluble CO2 increases with culture age of Tetrahymena pyriformis. CO2 is a weak acid and is capable of acidifying intracellular pH (pHi). Changes in pHi have been demonstrated to affect cell metabolism and growth in many systems. For these reasons, we investigated whether the concentrations of CO2 produced in vitro were sufficient to affect cell proliferation and pHi in Tetrahymena. In this study, we used DMO to mimic the weak acid properties of CO2. DMO is freely permeable to membranes in its uncharged form and has a pKa similar to that of CO2/HCO. In addition, it has the advantages of being metabolically inert and non-volatile. At concentrations similar to endogenously produced CO2, DMO acidifies pHi and arrests culture growth. In addition, procedures are described which decrease the media CO2 concentrations in both growing and non-growing cultures. These conditions lead to increased maximum culture density at stationary phase. The data indicate that, under our conditions, accumulation of CO2 in the culture leads to cessation of growth, probably through elimination of transmembrane pH gradients, which are necessary for regulation of metabolism and growth.  相似文献   

14.
Microfluorometric recordings showed that the inhibitory neurotransmitters γ‐aminobutyric acid (GABA) and glycine activated transient increases in the intracellular Cl concentration in neurons of the inferior colliculus (IC) from acutely isolated slices of the rat auditory midbrain. Current recordings in gramicidin‐perforated patch mode disclosed that GABA and glycine mainly evoked inward or biphasic currents. These currents were dependent on HCO and characterized by a continuous shift of their reversal potential (EGABA/gly) in the positive direction. In HCO‐buffered saline, GABA and glycine could also evoke an increase in the intracellular Ca2+ concentration. Ca2+ transients occurred only with large depolarizations and were blocked by Cd2+, suggesting an activation of voltage‐gated Ca2+ channels. However, in the absence of HCO, only a small rise, if any, in the intracellular Ca2+ concentration could be evoked by GABA or glycine. We suggest that the activation of GABAA or glycine receptors results in an acute accumulation of Cl that is enhanced by the depolarization owing to HCO efflux, thus shifting EGABA/gly to more positive values. A subsequent activation of these receptors would result in a strenghtened depolarization and an enlarged Ca2+ influx that might play a role in the stabilization of inhibitory synapses in the auditory pathway. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 386–396, 1999  相似文献   

15.
M2 transmembrane domain channel (M2‐TMD) permeation properties are studied using molecular dynamics simulations of M2‐TMD (1NYJ) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl or KCl saline solution. This study allows examination of spontaneous cation and anion entry into the selectivity filter. Three titration states of the M2‐TMD tetramer are modeled for which the four His37 residues, forming the selectivity filter, are net uncharged, +2 charged, or +3 charged. M2‐TMD structural properties from our simulations are compared with the properties of other models extracted from NMR and X‐ray studies. During 10 ns simulations, chloride ions occasionally occupy the positively‐charged selectivity filter region, and from umbrella sampling simulations, Cl? has a lower free‐energy barrier in the selectivity‐filter region than either Na+ or NH, and NH has a lower free‐energy barrier than Na+. For Na+ and Cl?, the free‐energy barriers are less than 5 kcal/mol, suggesting that the 1NYJ conformation would probably not be exquisitely proton selective. We also point out a rotameric configuration of Trp41 that could fully occlude the channel. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The rate of dissolution and dehydration of CO2 in a liquid model system was investigated. Components in the model system established the main conditions which may exist, in the extracellular space of a microbiological culture liquid. The charge in voltage of a glass electrode was measured which indicated the formation of H+ ions in the H2CO3 ? HCO H+ reaction. The rate of CO2 hydration increased with the increase of temperature from 0 to 40°C. Likewise the equilibrium of the reaction was shifted towards the forward reaction. Similar results were observed when the tip velocity of the impeller was increased. Data suggest that agitation promotes the dissolution of CO2 in the culture liquid through the reduction of gas-liquid film resistance in the diffusion of this gas. The rate of hydration of CO2 into the bulk of the liquid was independent of pCO2 above the surface of the liquid but depended on pCO2 in the gas bubble within the liquid. The concentration of HCO was, furthermore, influenced by the buffer components, buffer capacity, and the viscosity of the system. Since pCO2 and the HCO concentration in the extracellular space depend on both physical and chemical factors, the ventilation of a culture liquid necessitates both exhaust of CO2 from the gas bubbles of the culture broth and shift of the H2CO3 ? HCO + H+ reaction towards the backward direction.  相似文献   

17.
It was found that the cellular Na+-concentration (C) of Lodderomyces elongisporus D is depended on the extracellular K+-concentration (C). The relationship can be described by an equation in the form The function of the natrium ion seem to be to support the utilisation rate of potassium ion at lower extracellular K+-concentration.  相似文献   

18.
EPR and water proton relaxation rate (1/T1) studies of partially (40%) and “fully” (90%) purified preparations of membrane-bound (Na++K+) activated ATPase from sheep kidney indicate one tight binding site for Mn2+ per enzyme dimer, with a dissociation constant (KD = 0.88 μM) in agreement with the kinetically determined activator constant, identifying this Mn2+-binding site as the active site of the ATPase. Competition studies indicate that Mg2+ binds at this site with a dissociation constant of 1 mM in agreement with its activator constant. Inorganic phosphate and methylphosphonate bind to the enzyme-Mn2+ complex with similar high affinities and decrease l/T1 of water protons due t o a decrease from four to three in the number of rapidly exchanging water protons in the coordination sphere of enzyme-bound Mn2+. The relative effectiveness of Na+ and K+ in facilitating ternary complex formation with HPO and CH3PO as a function of pH indicates that Na+ induces the phosphate monoanion t o interact with enzyme-bound Mn2+, while K+ causes the phosphate dianion to interact with the enzyme-bound Mn2+. Thus protonation of an enzyme-bound phosphoryl group would convert a K+-binding site to a Na+-binding site. Dissociation constants for K+ and Na+, estimated from NMR titrations, agreed with kinetically determined activator constants of these ions consistent with binding t o the active site. Parallel 32Pi-binding studies show negligible formation (< 7%) of a covalent E–P complex under these conditions, indicating that the NMR method has detected an additional noncovalent intermediate in ion transport. Ouabain, which increases the extent of phosphorylation of the enzyme to 24% at pH 7.5 and t o 106% at pH 6.1, produced further decreases in l/T 1 of water protons. Preliminary 31P-relaxation studies of CH3PO in the presence of ATPase and Mn2+ yield an Mn to P distance (6.9 ± 0.5 Å) suggesting a second sphere enzyme-Mn-ligand-CH3PO complex. Previous kinetic studies have shown that T1+ substitutes for K+ in the activation of the enzyme but competes with Na+ at higher levels. From the paramagnetic effect of Mn2+ at the active site on the enzyme on I/T1 of 205T1 bound at the Na+ site, a Mn2+ to T1+ distance of 4.0 ± 0.1 Å is calculated, suggesting the sharing of a common ligand atom by Mn2+ and T1+ on the ATPase. Addition of P. increases this distance to 5.4 Å consistent with the insertion of P between Mn2+ and T1+. These results are consistent with a mechanism for the \documentclass{article}\pagestyle{empty}\begin{document}$ (\mathop {\rm N}\limits^{\rm i} {\rm a}^{\rm + } {\rm + K}^ +) $\end{document}-ATPase and for ion transport in which the ionization state of Pi at a single enzyme active site controls the binding and transport of Na+ and K+, and indicate that the transport site for monovalent cations is very near the catalytic site of the ATTase. Our mechanism also accounts for the order of magnitude weaker binding of Na+ compared to K+.  相似文献   

19.
We describe conditions which lead to complete helix formation of poly(I) in the presence of NH. Binding of NH is shown to be specific in the presence of Li+, which does not by itself support helix formation under these conditions. The NH–poly(I) complex is characterized by uv, CD, and ir spectroscopy. The CD spectrum is strikingly different from those of the Na+ or K+ complexes, the first extremum being changed from negative for the metal ions to positive for NH. A stereospecific model is proposed for the NH–poly(I) helix in which the N of NH is located on the axis of the four-stranded helix, midway between planar tetramers formed by the bases. The model is consistent with the tetrahedral symmetry of NH, the requirement for four acceptable hydrogen bonds, the observed stability of the helix, and the accepted geometry of the backbone.  相似文献   

20.
Cell volume regulation in mammalian oocytes and preimplantation embryos   总被引:1,自引:0,他引:1  
The earliest stages of preimplantation embryos are particularly sensitive to increased osmolarity, even within the physiological range. This sensitivity contributed to persistent developmental arrest, even when embryos were cultured in vitro in older, conditioned culture media, and seems to arise when embryos at the 1‐ and 2‐cell stages accumulate inorganic ions used for cell volume homeostasis at too high a level, through activation of coupled Na+/H+ and HCO/Cl? exchange. Such accumulation of inorganic ions can be disruptive since, above a certain level, the increased ionic strength disrupts cellular biochemistry and macromolecular functions and alters membrane potential. To counter this, embryos have evolved mechanisms of cell volume regulation that are unique to early preimplantation embryogenesis. The primary role of these is glycine accumulation via the GLYT1 transporter, with a secondary contribution by betaine accumulation via the SIT1 transporter. Independent cell‐volume regulation first arises in the oocyte only after ovulation is triggered, when the strong oocyte‐zona pellucida adhesion present in germinal vesicle stage oocytes in the ovarian follicle is released and GLYT1 becomes activated to begin accumulating glycine. Open questions still remain regarding how these processes are regulated. Mol. Reprod. Dev. 79: 821–831, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号