首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth’s angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.  相似文献   

2.
A study is made of the dynamics of planetary-scale electromagnetic waves in the F-layer of the ionosphere. It is shown that, in this layer, a new branch of large-scale magneto-ionospheric wave perturbations is generated under the action of the latitudinal variations of the geomagnetic field, which are a constant property of the ionosphere. The waves propagate along the parallels with phase velocities of tens to hundreds of km/s. The pulsations of the geomagnetic field in the waves can be as strong as several tens of nT. A possible self-localization effect is revealed: these waves may form nonlinear localized solitary vortices moving either westward or eastward along the parallels with velocities much higher than the phase velocities of the linear waves. The characteristic dimension of a vortex is about 104 km or even larger. The magnetic fields generated by vortex structures are one order of magnitude stronger than those in linear waves. The vortices are long-lived formations and may be regarded as elements of strong structural turbulence in the ionosphere. The properties of the wave structures under investigation are very similar to those of ultralow-frequency perturbations observed experimentally in the ionosphere at middle latitudes.  相似文献   

3.
The possibility of generating zonal perturbations by drift-Alfvén turbulence in a plasma with a finite pressure (1>β>me/mi) is investigated. A set of coupled equations is derived that includes the equation for the spectral function of the turbulence and the averaged equations for zonal perturbations. It is shown that, in particular cases, the equation for the spectral function possesses action invariants; i.e., it takes the form of a conservation law for some quantities that are proportional to the spectral function of turbulence. Two types of instability of the zonal perturbations are revealed. The first type of instability generates only a zonal flow. Two regimes of this instability—resonant and hydrodynamic regimes—are examined, and the corresponding instability growth rates are determined. The second type of instability takes place when the resonant interaction of drift-Alfvén waves with electrons is taken into account. Because of this instability, the generation of a zonal magnetic field is inevitably accompanied by the generation of a zonal flow. It is found that the growth rate of the second type of instability is slower than that of the first type.  相似文献   

4.
The stability of periodic flows and helicon waves against large-scale perturbations is investigated analytically in resistive electron magnetohydrodynamics by the method of two-scale expansions. It is shown that long-wavelength perturbations of a Kolmogorov-type flow are destabilized by the effect of negative resistivity. The destabilization of long-wavelength perturbations of a Beltrami-type helical flow and helicon waves is related to the microhelicity of the primary flow (wave). The instability of long-wavelength perturbations of an anisotropic helical flow is found to result from both the effect of negative resistivity and the effect associated with the microhelical nature of the flow. The criteria for the onset of the corresponding instabilities are derived. Numerical simulations are carried out based on nonlinear electron magnetohydrodynamic equations with initial conditions corresponding to the analytic formulation of the problem. The results of simulations on the whole confirm analytical results in the parameter range in which the latter are applicable and, in addition, extend the stability analysis to the parameter ranges that are beyond the scope of analytic approximations.  相似文献   

5.
The interaction of charged dust grains with nonlinear vortical structures in the Earth’s atmosphere is analyzed. Certain aspects of the atmosphere?ionosphere interaction, in particular, mechanisms for the appearance of dust grains at ionospheric altitudes, are discussed. It is shown that, at certain altitudes, there are regions in the wavenumber space in which conditions leading to the excitation of acoustic?gravity waves are satisfied. The interaction of nonlinear acoustic?gravity waves with dust grains of meteoric origin at ionospheric altitudes, which leads to the mixing and redistribution of dust grains over the region where vortices exist, is investigated. The possibility of formation of vertical and horizontal dust flows in dusty ionospheric plasma as a result of modulational instability is analyzed. The dynamics of dust grains in dust devils frequently arising in the atmosphere above well-heated surfaces is modeled. The vortical structure of such a dust devil is characterized by a reduced pressure in the center, which facilitates the lifting of small dust grains from the surface. The formulated model is used to calculate the trajectories of dust grains in dust devils with allowance for the influence of the electric field generated in the vortex by colliding dust grains. The calculations show that dust devils play an important role in the transport of dust grains.  相似文献   

6.
It is shown that, during Perseid, Geminid, Orionid, and Leonid meteor showers, the excitation of low-frequency dust acoustic perturbations by modulational instability in the Earth’s ionosphere can lead to the generation of infrasonic waves. The processes accompanying the propagation of these waves are considered, and the possibility of observing the waves from the Earth’s surface is discussed, as well as the possible onset of acoustic gravitational vortex structures in the region of dust acoustic perturbations. The generation of such structures during Perseid, Geminid, Orionid, and Leonid meteor showers can show up as an increase in the intensity of green nightglow by an amount on the order of 10% and can be attributed to the formation of nonlinear (vortex) structures at altitudes of 110–120 km.  相似文献   

7.
The nonlinear stage of Kelvin-Helmholtz (KH) instability in a finite-width plane-parallel plasma flow is analyzed. The analysis is performed by means of two-dimensional numerical simulations with the use of ideal magnetohydrodynamic equations describing isothermal plasma flows propagating along the magnetic field. The influence of the magnetic field strength, the plasma temperature, and the ratio of the flow width to the width of the transition layer on the formation of vortex layers and large-scale flow perturbations is investigated. It is shown that, if the wavelength of periodic perturbations is shorter than the flow width, the symmetric and antisymmetric modes develop in a qualitatively similar manner. For waves with wavelengths longer than the flow width, the development of such modes is very different due to the mutual influence of the flow boundaries. Analysis of the development of instability at different values of the Alfvén Mach number M A shows that long-lived vortices with a characteristic scale length on the order of the flow width appear in a weak magnetic field for both symmetric and antisymmetric modes; however, the vortex geometries for these modes are different. In a strong magnetic field, M A ~ 5, the phase of vortex decay for both types of modes occurs faster than in a weak field; however, in the case of an antisymmetric mode, large-scale perturbations of the flow boundary are retained for a longer time. Analysis of the evolution of the initial disturbance produced by an ensemble of random small perturbations (noise) at different plasma temperatures shows that, for a flow width comparable with the width of the transition region, the development of KH instability is always antisymmetric in character and leads to well-developed large-scale perturbations of the flow as a whole. For a cold plasma with C S < 0.5U (where C S is the speed of sound and U is the flow velocity), in contrast to hot plasma with C S > 0.5U, the development of KH instability leads to the growth of the antisymmetric mode even if the flow width is much larger than the width of the transition region.  相似文献   

8.
The concept of modulational instability, which results from the coupling of waves modes of very different time and space scales, was introduced to plasma physics through an elegant paper by Vedenov and Rudakov in 1964 [1]. Our paper is devoted to the theory of modulational instability resulting from the interaction of lower hybrid waves and slow density perturbations associated with inertial Alfvén waves. The nonlinear set of equations describing the modulational coupling of these two types of waves is constructed. The lower hybrid wave trajectories are analyzed within predefined density structures and it is shown that these waves can be trapped in the vicinity of the density extremum. The density modulations, originally being associated with inertial Alfvén waves, deepen due to the trapping of lower hybrid waves; this leads to modulational instability. A dispersion relation describing the modulational instability is constructed and analyzed. The threshold intensity of the lower hybrid waves for the onset of instability is obtained and it is shown that instability can serve as an efficient mechanism for the excitation of inertial Alfvén waves in the auroral ionosphere.  相似文献   

9.
The generation of zonal flows by drift-Alfvén waves is studied with allowance for magnetic curvature effects. The basic plasmadynamic equations relating the electrostatic potential, vector potential, and perturbed plasma density are the vorticity equation, longitudinal Ohm’s law, and continuity equation. The basic equations are analyzed by applying a parametric formalism similar to that used in the theory of the generation of convective cells. In contrast to most previous investigations on the subject, consideration is given to primary modes having an arbitrary spectrum rather than to an individual monochromatic wave packet. The parametric approach so modified makes it possible to reveal a new class of instabilities of zonal flows that are analogous to two-stream instabilities in linear theory. It is shown that, in the standard theory of zonal flows, the zonal components of the vector potential and perturbed density are not excited. It is pointed out that zonal flows can be generated both in the case of a magnetic hill and in the case of a magnetic well. In the first case, the instabilities of zonal flows are analogous to negative-mass instabilities in linear theory, and, in the second case, they are analogous to two-stream instabilities.  相似文献   

10.
A nonlinear theory of the instability of a straight relativistic dense electron beam in a plasma waveguide is derived for conditions of the stimulated collective Cherenkov effect. A study is made of a waveguide with a dense plasma such that the plasma wave excited by the beam during the instability can be escribed, with a good degree of accuracy, as a potential wave. General relativistic nonlinear equations are btained that describe the temporal dynamics of beam-plasma instabilities with allowance for plasma nonlinearity and the generation of harmonics of the initial perturbation. Under the assumption that the resonant interaction between the beam waves and the plasma waves is weak, the general equations are reduced to relativistic equations with cubic nonlinearities by using the method of expansion in small perturbations of the trajectories and momenta of the beam and plasma electrons. The reduced equations are solved analytically, the time scales on which the instability saturates are determined, and the nonlinear saturation amplitudes are obtained. A comparison between analytical solutions to the reduced equations and numerical solutions to the general nonlinear equations shows them to be in good agreement. Nonlinear processes caused by the relativistic nature of the beam are found to prevent stochastization of the system in the nonlinear stage of the well-developed instability. In contrast, a nonrelativistic electron beam is found to be subject to significant anomalous nonlinear stochastization.  相似文献   

11.
Bloodflow in arteries often shows a rich variety of vortical flows, which are dominated by the complex geometry of blood vessels, the dynamic pulsation of blood flow, and the complicated boundary conditions. With a two-dimensional model of unsteady flow in a stenosed channel, the pulsatile influence on such vortical fluid dynamics has been numerically studied in terms of waveform dependence on physiological pulsation. Results are presented for unsteady flows downstream of the stenosed portion with variation in the wavefiorms of systole and diastole. Overall, a train of propagating vortex waves is observed for all the cases, but it shows great sensitivity to the waveforms. The generation and development of the vortex waves may be linked to the presence of an adverse pressure gradient within a specific interval between two points of inflection of the systolic waveform. The adverse pressure gradient consists of a global pressure gradient that is found to be closely related to the dynamnics of' the pulsation, and a local pressure gradient, which is obsented to be dominated by the nonlinear vortex dynamics.  相似文献   

12.
During the observation of Perseid, Leonid, Gemenid, and Orionid meteor showers, stable low-frequency lines in the frequency range of 20–60 Hz were recorded against the radio-frequency noise background. A physical mechanism for this effect is proposed, and it is established that the effect itself is related to the modulational interaction between electromagnetic and dust acoustic waves. The dynamics of the components of a complex (dusty) ionospheric plasma with dust produced from the evolution of meteoric material is described. The conditions for the existence of dust acoustic waves in the ionosphere are considered, and the waves are shown to dissipate energy mainly in collisions of neutral particles with charged dust grains. The modulational instability of electromagnetic waves in a complex (dusty) ionospheric plasma is analyzed and is found to be driven by the nonlinear Joule heating, the ponderomotive force, and the processes governing dust charging and dynamics. The conditions for the onset of the modulational instability of electromagnetic waves, as well as its growth rate and threshold, are determined for both daytime and nighttime. It is shown that low-frequency perturbations generated in the modulational interaction are related to dust acoustic waves.  相似文献   

13.
Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.  相似文献   

14.
We used a simple mathematical model of rat thick ascending limb (TAL) of the loop of Henle to predict the impact of spatially inhomogeneous NaCl permeability, spatially inhomogeneous NaCl active transport, and spatially inhomogeneous tubular radius on luminal NaCl concentration when sustained, sinusoidal perturbations were superimposed on steady-state TAL flow. A mathematical model previously devised by us that used homogeneous TAL transport and fixed TAL radius predicted that such perturbations result in TAL luminal fluid NaCl concentration profiles that are standing waves. That study also predicted that nodes in NaCl concentration occur at the end of the TAL when the tubular fluid transit time equals the period of a periodic perturbation, and that, for non-nodal periods, sinusoidal perturbations generate non-sinusoidal oscillations (and thus a series of harmonics) in NaCl concentration at the TAL end. In the present study we find that the inhomogeneities transform the standing waves and their associated nodes into approximate standing waves and approximate nodes. The impact of inhomogeneous NaCl permeability is small. However, for inhomogeneous active transport or inhomogeneous radius, the oscillations for non-nodal periods tend to be less sinusoidal and more distorted than in the homogeneous case and to thus have stronger harmonics. Both the homogeneous and non-homogeneous cases predict that the TAL, in its transduction of flow oscillations into concentration oscillations, acts as a low-pass filter, but the inhomogeneities result in a less effective filter that has accentuated non-linearities.  相似文献   

15.
The modulatonal instability theory for the generation of large-scale (zonal) modes by drift modes has been extended to the second order including the effects of finite amplitude zonal flows, ? q . The nonlinear (second-order) sidebands are included in the perturbative expansion to derive the nonlinear equation for the evolution of ? q . It is shown that effects of finite ? q reduce the growth rate of zonal flow with a possibility of oscillatory regimes at a later stage.  相似文献   

16.
The generation of zonal flows by kinetic Alfvén waves is analyzed. It is noted that the basic approach underlying the existing theory of this phenomenon is too simplified because it attributes the generation of zonal flows to instabilities of an individual monochromatic wave packet of kinetic Alfvén waves. It is shown that, when a monochromatic wave packet is stable, it is necessary to analyze a more complicated situation with a double-peak packet (or, in the simplest case, with two pump waves). It is found that, for a double-peak packet of kinetic Alfvén waves, there is a new class of instabilities of zonal flows and that these instabilities are analogous to two-stream instabilities in linear theory. The main types of such instabilities are investigated.  相似文献   

17.
Magnetized Rossby waves are produced by a dynamo electric field and represent the ionospheric generalization of tropospheric Rossby waves in a rotating atmosphere with a spatially inhomogeneous geomagnetic field. They are described by the modified Charney-Obukhov equation with a Poisson-bracket convective nonlinearity. This type of equation has solutions in the form of synoptic-scale nonlinear solitary dipole vortex structures of 1000–3000 km in diameter. With the use of equivalence conditions, various stationary nonlinear solutions are obtained and investigated analytically. The basic characteristics of stationary vortex structures for magnetized Rossby waves are investigated. Published in Russian in Fizika Plazmy, 2006, Vol. 32, No. 12, pp. 1079–1091. The text was submitted by the authors in English.  相似文献   

18.
The dynamic characteristics of the proximal arterial system are studied by solving the nonlinear momentum and mass conservation equations for pressure and flow. The equations are solved for a model systemic arterial system that includes the aorta, common iliacs, and the internal and external iliac arteries. The model includes geometric and elastic taper of the aorta, nonlinearly elastic arteries, side flows, and a complex distal impedance. The model pressure wave shape, inlet and outlet impedance, wave travel, and apparent wave velocity compare favorably with the values measured on humans. Calculations indicate that: (i) reflections are the major factor determining the shape and distal amplification of the pressure wave in the arterial tree; (ii) although important in attenuating the proximal transmission of reflecting waves, geometric taper is not the major cause of the distal pressure wave amplification; (iii) the dicrotic wave is a result of peripheral reflection and is not due to the sudden change in flow at the end of systole; (iv) the elastic taper and nonlinearity of the wall elasticity are of minor significance in determining the flow and pressure profiles; and (v) in spite of numerous nonlinearities, the system behaves in a somewhat linear fashion for the lower frequency components.  相似文献   

19.
A quantum theory of stimulated Cherenkov emission of longitudinal waves by an electron beam in an isotropic plasma is presented. The emitted radiation is interpreted as instability due to the decay of the de Broglie wave of a beam electron. Nonrelativistic and relativistic nonlinear quantum equations for Cherenkov beam instabilities are obtained. A linear approximation is used to derive quantum dispersion relations and to determine the instability growth rates. The mechanisms for nonlinear saturation of quantum Cherenkov beam instabilities are investigated, and the corresponding analytic solutions are found.  相似文献   

20.
A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense and localized, while the cyclone is less intense and has a larger size. In the course of further evolution, the cyclone persists for a relatively longer time, while the anticyclone breaks into small-scale vortices and dissipation hastens this process. It is found that the relaxation of the vortex by viscous dissipation differs in character from that by the frictional force. The time scale on which the vortex is damped depends strongly on its typical size: larger scale vortices are longer lived structures. It is shown that, as the instability develops, the initial vortex is amplified and the lifetime of the dipole pair components-cyclone and anticyclone-becomes longer. As time elapses, small-scale noise is generated in the system, and the spatial structure of the perturbation potential becomes irregular. The pattern of interaction of solitary vortex structures among themselves and with the medium shows that they can take part in strong drift turbulence and anomalous transport of heat and matter in an inhomogeneous magnetized plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号