首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Previous work demonstrated that U1 small nuclear ribonucleoprotein particle (snRNP), bound to a downstream 5' splice site, can positively influence utilization of an upstream 3' splice site via exon definition in both trans- and cis-splicing systems. Although exon definition results in the enhancement of splicing of an upstream intron, the nature of the factors involved has remained elusive. We assayed the interaction of U1 snRNP as well as the positive effect of a downstream 5' splice site on trans-splicing in nematode extracts containing either inactive (early in development) or active (later in development) serine/arginine-rich splicing factors (SR proteins). We have determined that U1 snRNP interacts with the 5' splice site in the downstream exon even in the absence of active SR proteins. In addition, we determined that U1 snRNP-directed loading of U2 snRNP onto the branch site as well as efficient trans-splicing in these inactive extracts could be rescued upon the addition of active SR proteins. Identical results were obtained when we examined the interaction of U1 snRNP as well as the requirement for SR proteins in communication across a cis-spliced intron. Weakening of the 3' splice site uncovered distinct differences, however, in the ability of U1 snRNP to promote U2 addition, dependent upon its position relative to the branch site. These results demonstrate that SR proteins are required for communication between U1 and U2 snRNPs whether this interaction is across introns or exons.  相似文献   

2.
A short 5' splice site RNA oligonucleotide (5'SS RNA oligo) undergoes both steps of splicing when a second RNA containing the 3' splice site region (3'SS RNA) is added in trans. This trans-splicing reaction displays the same 5' and 3' splice site sequence requirements as cis-splicing of full-length pre-mRNA. The analysis of RNA-snRNP complexes formed on each of the two splice site RNAs is consistent with the formation of partial complexes, which then associate to form the complete spliceosome. Specifically, U2 snRNP bound to the 3'SS RNA associates with U4/U5/U6 snRNP bound to the 5'SS RNA oligo. Thus, as expected, trans-splicing depends on the integrity of U2, U4, and U6 snRNAs. However, unlike cis-splicing, trans-splicing is enhanced when the 5' end of U1 snRNA is blocked or removed or when the U1 snRNP is depleted. Thus, the early regulatory requirement for U1 snRNP, which is essential in cis-splicing, is bypassed in this trans-splicing system. This simplified trans-splicing reaction offers a unique model system in which to study the mechanistic details of pre-mRNA splicing.  相似文献   

3.
Serine-arginine (SR) proteins are general metazoan splicing factors that contain an essential arginine/serine-rich (RS) domain. On typical U2-type introns, RS domains contact the branchpoint and 5' splice site to promote base-pairing with U small nuclear RNAs (snRNAs). Here we analyze the role of SR proteins in splicing of U12-type introns and in the second step of U2-type intron splicing. We show that RS domains contact the branchpoint and 5' splice site of a U12-type intron. On a U2-type intron, we find that the RS domain contacts the site of the U6 snRNA-5' splice site interaction during the first step of splicing and shifts to contact the site of the U5 snRNA-exon 1 interaction during the second step. Our results reveal alternative interactions between the RS domain and 5' splice site region that coincide with remodeling of the spliceosome between the two catalytic steps.  相似文献   

4.
SR45 is a serine/arginine-rich (SR)-like protein with two arginine/serine-rich (RS) domains. We have previously shown that SR45 regulates alternative splicing (AS) by differential selection of 5' and 3' splice sites. However, it is unknown how SR45 regulates AS. To gain mechanistic insights into the roles of SR45 in splicing, we screened a yeast two-hybrid library with SR45. This screening resulted in the isolation of two spliceosomal proteins, U1-70K and U2AF(35) b that are known to function in 5' and 3' splice site selection, respectively. This screen not only confirmed our prior observation that U1-70K and SR45 interact, but also helped to identify an additional interacting partner (U2AF(35) ). In vitro and in vivo analyses revealed an interaction of SR45 with both paralogs of U2AF(35) . Furthermore, we show that the RS1 and RS2 domains of SR45, and not the RNA recognition motif (RRM) domain, associate independently with both U2AF(35) proteins. Interaction studies among U2AF(35) paralogs and between U2AF(35) and U1-70K revealed that U2AF(35) can form homo- or heterodimers and that U2AF(35) proteins can associate with U1-70K. Using RNA probes from SR30 intron 10, whose splicing is altered in the sr45 mutant, we show that SR45 and U2AF(35) b bind to different parts of the intron, with a binding site for SR45 in the 5' region and two binding regions, each ending with a known 3' splice site, for U2AF(35) b. These results suggest that SR45 recruits U1snRNP and U2AF to 5' and 3' splice sites, respectively, by interacting with pre-mRNA, U1-70K and U2AF(35) and modulates AS.  相似文献   

5.
We show that addition of SR proteins to in vitro splicing extracts results in a significant increase in assembly of the earliest prespliceosomal complex E and a corresponding decrease in assembly of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex H. In addition, SR proteins promote formation of the E5' and E3' complexes that assemble on RNAs containing only 5' and 3' splice sites, respectively. We conclude that SR proteins promote the earliest specific recognition of both the 5' and 3' splice sites and are limiting for this function in HeLa nuclear extracts. Using UV cross-linking, we demonstrate specific, splice site-dependent RNA-protein interactions of SR proteins in the E, E5', and E3' complexes. SR proteins do not UV cross-link in the H complex, and conversely, hnRNP cross-linking is largely excluded from the E-type complexes. We also show that a discrete complex resembling the E5' complex assembles on both purine-rich and non-purine-rich exonic splicing enhancers. This complex, which we have designated the Enhancer complex, contains U1 small nuclear RNP (snRNP) and is associated with different SR protein family members, depending on the sequence of the enhancer. We propose that both downstream 5' splice site enhancers and exonic enhancers function by establishing a network of pre-mRNA-protein and protein-protein interactions involving U1 snRNP, SR proteins, and U2AF that is similar to the interactions that bring the 5' and 3' splice sites together in the E complex.  相似文献   

6.
Ser/Arg (SR)-rich proteins are important splicing factors in both general and alternative splicing. By binding to specific sequences on pre-mRNA and interacting with other splicing factors via their RS domain they mediate different intraspliceosomal contacts, thereby helping in splice site selection and spliceosome assembly. While characterizing new members of this protein family in Arabidopsis, we have identified two proteins, termed CypRS64 and CypRS92, consisting of an N-terminal peptidyl-prolyl cis/trans isomerase domain and a C-terminal domain with many SR/SP dipeptides. Cyclophilins possess a peptidyl-prolyl cis/trans isomerase activity and are implicated in protein folding, assembly, and transport. CypRS64 interacts in vivo and in vitro with a subset of Arabidopsis SR proteins, including SRp30 and SRp34/SR1, two homologs of mammalian SF2/ASF, known to be important for 5' splice site recognition. In addition, both cyclophilins interact with U1-70K and U11-35K, which in turn are binding partners of SRp34/SR1. CypRS64 is a nucleoplasmic protein, but in most cells expressing CypRS64-GFP fusion it was also found in one to six round nuclear bodies. However, co-expression of CypRS64 with its binding partners resulted in re-localization of CypRS64 from the nuclear bodies to nuclear speckles, indicating functional interactions. These findings together with the observation that binding of SRp34/SR1 to CypRS64 is phosphorylation-dependent indicate an involvement of CypRS64 in nuclear pre-mRNA splicing, possibly by regulating phosphorylation/dephosphorylation of SR proteins and other spliceosomal components. Alternatively, binding of CypRS64 to proteins important for 5' splice site recognition suggests its involvement in the dynamics of spliceosome assembly.  相似文献   

7.
SR (ser/arg) proteins have been shown to play roles in numerous aspects of pre-mRNA splicing, including modulation of alternative splicing, commitment of substrates to the splicing pathway, and splice site communication. The last of these, splice site communication, is particularly relevant to trans-splicing in which the 5' and 3' exons originate on separate molecules. The participation of SR proteins in naturally occurring, spliced leader RNA-dependent transsplicing has not been examined. Here, we have isolated SR proteins from an organism that performs both trans- and cis-splicing, the nematode Ascaris lumbricoides. To examine their activity in in vitro splicing reactions, we have also developed and characterized an SR protein-depleted whole-cell extract. When tested in this extract, the nematode SR proteins are required for both trans- and cis-splicing. In addition, the state of phosphorylation of the nematode SR proteins is critical to their activity in vitro. Interestingly, mammalian (HeLa) and A. lumbricoides SR proteins exhibit equivalent activities in cis-splicing, while the nematode SR proteins are much more active in trans-splicing. Thus, it appears that SR proteins purified from an organism that naturally trans-splices its pre-mRNAs promote this reaction to a greater extent than do their mammalian counterparts.  相似文献   

8.
The essential splicing factor U2AF (U2 auxiliary factor) is a heterodimer composed of 65-kDa (U2AF(65)) and 35-kDa (U2AF(35)) subunits. U2AF(35) has multiple functions in pre-mRNA splicing. First, U2AF(35) has been shown to function by directly interacting with the AG at the 3' splice site. Second, U2AF(35) is thought to play a role in the recruitment of U2AF(65) by serine-arginine-rich (SR) proteins in enhancer-dependent splicing. It has been proposed that the physical interaction between the arginine-serine-rich (RS) domain of U2AF(35) and SR proteins is important for this activity. However, other data suggest that this may not be the case. Here, we report the identification of a mammalian gene that encodes a 26-kDa protein bearing strong sequence similarity to U2AF(35), designated U2AF(26). The N-terminal 187 amino acids of U2AF(35) and U2AF(26) are nearly identical. However, the C-terminal domain of U2AF(26) lacks many characteristics of the U2AF(35) RS domain and, therefore, might be incapable of interacting with SR proteins. We show that U2AF(26) can associate with U2AF(65) and can functionally substitute for U2AF(35) in both constitutive and enhancer-dependent splicing, demonstrating that the RS domain of the small U2AF subunit is not required for splicing enhancer function. Finally, we show that U2AF(26) functions by enhancing the binding of U2AF(65) to weak 3' splice sites. These studies identify U2AF(26) as a mammalian splicing factor and demonstrate that distinct U2AF complexes can participate in pre-mRNA splicing. Based on its sequence and functional similarity to U2AF(35), U2AF(26) may play a role in regulating alternative splicing.  相似文献   

9.
Pairing between U2 snRNA and the branch site of spliceosomal introns is essential for spliceosome assembly and is thought to be required for the first catalytic step of splicing. We have identified an RNA comprising the 5' end of U2 snRNA and the 3' exon of the ACT1-CUP1 reporter gene, resulting from a trans-splicing reaction in which a 5' splice site-like sequence in the universally conserved branch site-binding region of U2 is used in trans as a 5' splice site for both steps of splicing in vivo. Formation of this product occurs in functional spliceosomes assembled on reporter genes whose 5' splice sites are predicted to bind poorly at the spliceosome catalytic center. Multiple spatially disparate splice sites in U2 can be used, calling into question both the fate of its pairing to the branch site and the details of its role in splicing catalysis.  相似文献   

10.
SR proteins play important roles in the recognition and selection of the 3' and 5' splice site of a given intron and contribute to the phosphorylation/dephosphorylation-mediated regulation of pre-mRNA splicing. Recent studies have demonstrated that the U1 snRNP is recruited to the 5' splice site by protein/protein interactions involving the SR domains of the U1-70K protein and SF2/ASF. Recently, it was suggested that SR proteins might also contribute to the binding of the [U4/U6.U5] tri-snRNP to the pre-spliceosome (Roscigno RF, Garcia-Blanco MA, 1995, RNA 1:692-706), although it remains unclear whether these SR proteins interact with proteins of the tri-snRNP complex. As a first step toward the identification of proteins that could potentially mediate the integration of the [U4/U6.U5] tri-snRNP complex into the spliceosome, we investigated whether purified [U4/U6.U5] tri-snRNP complexes contain SR proteins. Three proteins in the tri-snRNP complex with approximate molecular weights of 27, 60, and 100 kDa were phosphorylated by purified snRNP-associated protein kinase, which has been shown previously to phosphorylate the serine/ arginine-rich domains of U1-70K and SF2/ASF (Woppmann A et al., 1993, Nucleic Acids Res 21:2815-2822). These proteins are thus prime candidates for novel tri-snRNP SR proteins. Here, we describe the biochemical and molecular characterization of the 27K protein. Analysis of a cDNA encoding the 27K protein revealed an N-terminal SR domain strongly homologous (54% identity) to the SR domain of the U1 snRNP-specific 70K protein. In contrast to many other SR proteins, the 27K protein does not contain an RNA-binding domain. The 27K protein can be phosphorylated in vitro by the snRNP-associated protein kinase and exhibits several isoelectric variants upon 2D gel electrophoresis. Thus, the tri-snRNP-specific 27K protein could potentially be involved in SR protein-mediated protein/protein interactions and, additionally, its phosphorylation state could modulate pre-mRNA splicing.  相似文献   

11.
12.
A sensitive assay based on competition between cis-and trans-splicing suggested that factors in addition to U1 snRNP were important for early 5' splice site recognition. Cross-linking and physical protection experiments revealed a functionally important interaction between U4/U6.U5 tri-snRNP and the 5' splice site, which unexpectedly was not dependent upon prior binding of U2 snRNP to the branch point. The early 5' splice site/tri-snRNP interaction requires ATP, occurs in both nematode and HeLa cell extracts, and involves sequence-specific interactions between the highly conserved splicing factor Prp8 and the 5' splice site. We propose that U1 and U5 snRNPs functionally collaborate to recognize and define the 5' splice site prior to establishment of communication with the 3' splice site.  相似文献   

13.
Shen H  Green MR 《Molecular cell》2004,16(3):363-373
Serine-arginine (SR) proteins are general splicing factors and can function through binding to exonic splicing enhancers (ESEs). SR proteins and several other mammalian splicing factors contain an arginine-serine-rich (RS) domain required to promote splicing. We have recently found that the ESE bound RS domain functions by contacting the branchpoint. Here, we perform RNA-protein crosslinking experiments to show that the branchpoint is sequentially contacted first in complex E by the RS domain of the essential splicing factor U2AF(65) and then in the prespliceosome by the ESE bound RS domain. Although the ESE bound RS domain can promote formation of the prespliceosome, at least one additional SR protein is required for complete spliceosome assembly. We show that the RS domain of this additional SR protein contacts the 5' splice site specifically in the mature spliceosome. We propose that direct contact with splicing signals is a general mechanism by which RS domains promote splicing.  相似文献   

14.
Rous sarcoma virus (RSV) requires large amounts of unspliced RNA for replication. Splicing and polyadenylation are coupled in the cells they infect, which raises the question of how viral RNA is efficiently polyadenylated in the absence of splicing. Optimal RSV polyadenylation requires a far-upstream splicing control element, the negative regulator of splicing (NRS), that binds SR proteins and U1/U11 snRNPs and functions as a pseudo-5' splice site that interacts with and sequesters 3' splice sites. We investigated a link between NRS-mediated splicing inhibition and efficient polyadenylation. In vitro, the NRS alone activated a model RSV polyadenylation substrate, and while the effect did not require the snRNP-binding sites or a downstream 3' splice site, SR proteins were sufficient to stimulate polyadenylation. Consistent with this, SELEX-binding sites for the SR proteins ASF/SF2, 9G8, and SRp20 were able to stimulate polyadenylation when placed upstream of the RSV poly(A) site. In vivo, however, the SELEX sites improved polyadenylation in proviral clones only when the NRS-3' splice site complex could form. Deletions that positioned the SR protein-binding sites closer to the poly(A) site eliminated the requirement for the NRS-3' splice site interaction. This indicates a novel role for SR proteins in promoting RSV polyadenylation in the context of the NRS-3' splice site complex, which is thought to bridge the long distance between the NRS and poly(A) site. The results further suggest a more general role for SR proteins in polyadenylation of cellular mRNAs.  相似文献   

15.
Maturation of mRNAs in trypanosomes involves trans splicing of the 5' end of the spliced leader RNA and the exons of polycistronic pre-mRNAs, requiring small nuclear ribonucleoproteins (snRNPs) as cofactors. We have mapped protein-binding sites in the U2 and U4/U6 snRNPs by a combination of RNase H protection analysis, native gel electrophoresis, and CsCl density gradient centrifugation. In the U2 snRNP, protein binding occurs primarily in the 3'-terminal domain; through U2 snRNP reconstitution and chemical modification-interference assays, we have identified discrete positions within stem-loop IV of Trypanosoma brucei U2 RNA that are essential for protein binding; significantly, some of these positions differ from the consensus sequence derived from cis-spliceosomal U2 RNAs. In the U4/U6 snRNP, the major protein-binding region is contained within the 3'-terminal half of U4 RNA. In sum, while the overall domain structure of the U2 and U4/U6 snRNPs is conserved between cis- and trans-splicing systems, our data suggest that there are also trans-spliceosomal specific determinants of RNA-protein binding.  相似文献   

16.
Exonic splicing enhancer (ESE) sequences are important for the recognition of adjacent splice sites in pre-mRNA and for the regulation of splice site selection. It has been proposed that ESEs function by associating with one or more serine/arginine-repeat (SR) proteins which stabilize the binding of the U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor (U2AF) to the polypyrimidine tract upstream of the 3' splice site. We have tested this model by analyzing the composition of splicing complexes assembled on an ESE-dependent pre-mRNA derived from the doublesex gene of Drosophila. Several SR proteins and hTra2beta, a human homolog of the Drosophila alternative splicing regulator Transformer-2, associate with this pre-mRNA in the presence, but not in the absence, of a purine-rich ESE. By contrast, the 65-kDa subunit of U2AF (U2AF-65 kDa) bound equally to the pre-mRNA in the presence and absence of the ESE. Time course experiments revealed differences in the levels and kinetics of association of individual SR proteins with the ESE-containing pre-mRNA, whereas U2AF-65 kDa bound prior to most SR proteins and hTra2beta and its level of binding did not change significantly during the course of the splicing reaction. Binding of U2AF-65 kDa to the ESE-dependent pre-mRNA was, however, dependent on U1 snRNP. The results indicate that an ESE promotes spliceosome formation through interactions that are distinct from those required for the binding of U2AF-65 kDa to the polypyrimidine tract.  相似文献   

17.
A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly   总被引:125,自引:0,他引:125  
B Ruskin  P D Zamore  M R Green 《Cell》1988,52(2):207-219
Pre-mRNA splicing complex assembly is mediated by two specific pre-mRNA-snRNP interactions: U1 snRNP binds to the 5' splice site and U2 snRNP binds to the branch point. Here we show that unlike a purified U1 snRNP, which can bind to a 5' splice site, a partially purified U2 snRNP cannot interact with its target pre-mRNA sequence. We identify a previously uncharacterized activity, U2AF, that is required for the U2 snRNP-branch point interaction and splicing complex formation. Using RNA substrate exclusion and competition assays, we demonstrate that U2AF binds to the 3' splice site region prior to the U2 snRNP-branch point interaction. This provides an explanation for the necessity of the 3' splice site region in U2 snRNP binding and, hence, the first step of splicing.  相似文献   

18.
Splicing enhancement in higher eukaryotes has been linked to SR proteins, to U1 snRNP, and to communication between splice sites across introns or exons mediated by protein-protein interactions. It has been previously shown that, in yeast, communication mediated by RNA-RNA interactions between the two ends of introns is a basis for splicing enhancement. We designed experiments of randomization-selection to isolate splicing enhancers that would work independently from RNA secondary structures. Surprisingly, one of the two families of sequences selected was essentially composed of 5' splice site variants. We show that this sequence enhances splicing independently of secondary structure, is exportable to heterologous contexts, and works in multiple copies with additive effects. The data argue in favor of an early role for splicing enhancement, possibly coincident with commitment complex formation. Genetic compensation experiments with U1 snRNA mutants suggest that U1 snRNP binding to noncanonical locations is required for splicing enhancement.  相似文献   

19.
Highly conserved G runs, G1M2 and ISE, regulate the proteolipid protein (PLP)/DM20 ratio. We have investigated recruitment of U1 small nuclear ribonuclear protein (snRNP) by G1M2 and ISE and examined the effect of splice site strength, distance, and context on G run function. G1M2 is necessary for initial recruitment of U1snRNP to the DM20 5' splice site independent of the strength of the splice site. G1M2 regulates E complex formation and supports DM20 splicing when functional U1snRNP is reduced. By contrast, the ISE is not required for the initial recruitment of U1snRNP to the PLP 5' splice site. However, in close proximity to either the DM20 or the PLP 5' splice site, the ISE recruits U1snRNP to both splice sites. The ISE enhances DM20 splicing, whereas close to the PLP 5' splice site, it inhibits PLP splicing. Splicing enhancement and inhibition are mediated by heterogeneous nuclear ribonuclear protein (hnRNP)H/F. The data show that recognition of the DM20 5' splice site depends on G run-mediated recruitment of U1snRNA, whereas a complex interaction between the ISE G runs, context and position determines the functional outcome on splicing. The data suggest that different mechanisms underlie G run-mediated recognition of 5' splice sites and that context and position play a critical role.  相似文献   

20.
The Rous sarcoma virus (RSV) negative regulator of splicing (NRS) is an RNA element that represses splicing and promotes polyadenylation of viral RNA. The NRS acts as a pseudo 5' splice site (ss), and serine-arginine (SR) proteins, U1snRNP, and U6 small nuclear ribonucleoproteins (snRNPs) are implicated in its function. The NRS also efficiently binds U11 snRNP of the U12-dependent splicing pathway, which is interesting, because U11 binds only poorly to authentic substrates that lack a U12-type 3' splice site. It is of considerable interest to understand how the low abundance U11 snRNP binds the NRS so well. Here we show that U11 can bind the NRS as a mono-snRNP in vitro and that a G-rich element located downstream of the U11 site is required for efficient binding. Mutational analyses indicated that two of four G tracts in this region were important for optimal U11 binding and that the G-rich region did not function indirectly by promoting U1 snRNP binding to an overlapping site. Surprisingly, inactivation of U2 snRNP also decreased U11 binding to the NRS. The NRS harbors a branch point-like/pyrimidine tract sequence (BP/Py) just upstream of the U1/U11 site that is characteristic of 3' splice sites. Deletion of this region decreased U2 and U11 binding, and deletion of the G-rich region also reduced U2 binding. The G element, but not the BP/Py sequence, was also required for U11 binding to the NRS in vivo as assessed by minor class splicing from the NRS to a minor class 3'ss from the P120 gene. These results indicate that efficient U11 binding to the isolated NRS involves at least two elements in addition to the U11 consensus sequence and may have implications for U11 binding to authentic splicing substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号