首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In response to the first Dutch elm disease (DED) pandemic, Siberian elm, Ulmus pumila, was planted to replace the native elm, U. minor, in Italy. The potential for hybridization between these two species is high and repeated hybridization could result in the genetic swamping of the native species and facilitate the evolution of invasiveness in the introduced species. We used genetic markers to examine the extent of hybridization between these two species and to determine the pattern of introgression. We quantified and compared the level of genetic diversity between the hybrids and the two parental species. Hybrids between U. pumila and U. minor were common. The pattern of introgression was not as strongly biased towards U. pumila as was previously observed for hybrids between U. rubra and U. pumila in the United States. The levels of heterozygosity were similar between U. minor and the hybrids and both groups had higher levels of heterozygosity relative to U. pumila. The programs Structure and NewHybrids indicated the presence of first- (F1) and second- generation (F2) hybrids and of backcrosses in the hybrid population. The presence of healthy DED resistant U. minor individuals combined with the self-compatibility of U. minor could help explain the presence of F2 individuals in Italy. The presence of F2 individuals, where most of the variability present in the hybrids will be released, could facilitate rapid evolution and the potential evolution of invasiveness of U. pumila in Italy.  相似文献   

2.
Background and Aims Ulmus minor has been severely affected by Dutch elm disease (DED). The introduction into Europe of the exotic Ulmus pumila, highly tolerant to DED, has resulted in it widely replacing native U. minor populations. Morphological and genetic evidence of hybridization has been reported, and thus there is a need for assessment of interspecific gene flow patterns in natural populations. This work therefore aimed at studying pollen gene flow in a remnant U. minor stand surrounded by trees of both species scattered across an agricultural landscape.Methods All trees from a small natural stand (350 in number) and the surrounding agricultural area within a 5-km radius (89) were genotyped at six microsatellite loci. Trees were morphologically characterized as U. minor, U. pumila or intermediate phenotypes, and morphological identification was compared with Bayesian clustering of genotypes. For paternity analysis, seeds were collected in two consecutive years from 20 and 28 mother trees. Maximum likelihood paternity assignment was used to elucidate intra- and interspecific gene flow patterns.Key Results Genetic structure analyses indicated the presence of two genetic clusters only partially matching the morphological identification. The paternity analysis results were consistent between the two consecutive years of sampling and showed high pollen immigration rates (∼0·80) and mean pollination distances (∼3 km), and a skewed distribution of reproductive success. Few intercluster pollinations and putative hybrid individuals were found.Conclusions Pollen gene flow is not impeded in the fragmented agricultural landscape investigated. High pollen immigration and extensive pollen dispersal distances are probably counteracting the potential loss of genetic variation caused by isolation. Some evidence was also found that U. minor and U. pumila can hybridize when in sympatry. Although hybridization might have beneficial effects on both species, remnant U. minor populations represent a valuable source of genetic diversity that needs to be preserved.  相似文献   

3.

Key message

Ulmus minor and U. glabra show a trade-off between safety and efficiency in water transport, and U. laevis shows adaptations to waterlogged environments.

Abstract

Three native elm species grow in Europe: Ulmus minor Mill., U. glabra Huds. and U. laevis Pall., and within the Iberian Peninsula their habitats mainly differ in water availability. We evaluated firstly whether vulnerability to xylem embolism caused by water-stress has been a determinant factor affecting their distribution; secondly, if their xylem anatomy differs due to water availability dissimilarities; and thirdly, if these species present a trade-off between water transport safety and efficiency. Plants of the three species were grown in a common-garden in Madrid, Central Spain. The centrifuge method was used for constructing the vulnerability curves, and anatomical measurements were carried out with an optical microscope. We found clear differences in conductivity and cavitation vulnerability between the three species. Although all three elms were highly vulnerable to cavitation, U. minor was significantly more resistant to water stress cavitation. This species reached 50 % loss in conductivity at ?1.1 MPa, compared to U. glabra that did so at ?0.5 MPa, and U. laevis at ?0.4 MPa. Maximum xylem specific conductivity and maximum leaf specific conductivity were two to three times higher in U. glabra when compared to U. minor. A clear trade-off between safety against losses of conductivity and water transport efficiency was observed considering both U. minor and U. glabra samples. Ulmus minor’s hydraulic configuration was better adapted to overcome drought episodes. The expected aridification of the Iberian Peninsula could compromise Ulmus populations due to their high vulnerability to drought stress.  相似文献   

4.
Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.  相似文献   

5.
Wood ontogeny patterns were determined during the ex vitro acclimatization period in micropropagated plantlets of hybrid poplar clones T-14 [Populus tremula × (Populus × canescens)] and T-50 [(Populus × canescens) × Populus tremula]. The temporal course of developmental changes in the woody tissue was characterized on a weekly basis starting from the day of transfer to the ex vitro environment until full acclimatization was achieved on day 28. In vitro rooted plantlets had already initiated lignification of secondary xylem cells. The greatest increase in the amount of woody tissue was observed on days 21 and 28. At the end of the acclimatization period, T-14 plantlets contained on average 41.4 % of secondary xylem tissue compared to 30.3 % found in T-50 plantlets. During the course of acclimatization, both clones displayed identical patterns of vessel lumen size distribution from small vessel lumen area to large vessel lumen area. This pattern differs from the characteristic diffuse-porous pattern of approximately evensized vessel lumen area distribution typical of mature wood. At the end of acclimatization, the differences in vessel lumen area and relative conductivity between the clones were negligible. Development of secondary xylem tissue during ex vitro acclimatization promotes the establishment of vigorous regenerants with stems that show increased bending strength and stiffness.  相似文献   

6.

Key message

Sustainable stomatal opening despite xylem cavitation occurs in ring-porous species and stomatal closure prior to cavitation in diffuse-porous species during soil drought.

Abstract

To elucidate the relationship between water loss regulation and vulnerability to cavitation associated with xylem structure, stomatal conductance (g s), defoliation, vulnerability curves, and vessel features were measured on seedlings of ring-porous Zelkova serrata and Melia azedarach, and diffuse-porous Betula platyphylla var. japonica, Cerasus jamasakura and Carpinus tschonoskii. Under prolonged drought conditions, the percentage loss of hydraulic conductivity (PLC) increased and g s decreased gradually with decreasing predawn (Ψpd) or xylem water potential (Ψxylem) in Zserrata. During the gentle increase of PLC in Mazedarach, g s increased in the early stages of dehydration while leaves were partly shed. A sharp reduction in g s was observed before the onset of an increase in the PLC for drying plants of the three diffuse-porous species, suggesting cavitation avoidance by stomatal regulation. In the ring-porous species, xylem-specific hydraulic conductivity (K s) was higher, whereas the vessel multiple fractions, the ratio of the number of grouped vessels to total vessels, was lower than that in the diffuse-porous species, suggesting that many were distributed as solitary vessels. This may explain the gradual increase in the PLC with decreasing Ψxylem because isolated vessels provide less opportunity for air seeding. Different water loss regulation to soil drought was identified among the species, with potential mechanisms being sustainable gas exchange at the expense of xylem dysfunction or partial leaf shedding, and the avoidance of xylem cavitation by strict stomatal regulation. These were linked to vulnerability to cavitation that appears to be governed by xylem structural properties.  相似文献   

7.

Key message

Ulmus pumila vary its water use strategy from seedling to maturity in a water-limited sandy land by adopting different photosynthetical capacities, water use efficiencies and morphological traits.

Abstract

Regeneration failure of natural Ulmus pumila populations has become a growing concern related to vegetation conservation and prediction of environmental change in the sandy lands of northern China. To better understand the life-history strategies of U. pumila and its adaptation to drought in semiarid environments, we studied ecophysiological and morphological traits related to water use in an age sequence of U. pumila representing four age classes: current-year seedlings (Uc), age 2- to 5-year-old saplings (Us), juveniles (Uj), and mature trees (Um). A comparison of hydrogen isotope data in xylem sap, soil water in different layers and groundwater showed that Uc relied on the soil water in the topsoil (0–40 cm), Us and Uj absorbed soil water from deeper soil (>40 cm), while Um mainly used stable groundwater with very deep (>2 m) taproots. Significantly lower predawn leaf water potentials were observed in Uc than in Uj or Um, suggesting that Uc experienced more severe water stress and had a weaker capacity to recovery. Moreover, Uc had the highest daily maximum net assimilation rate, daily maximum transpiration rate and daily maximum stomatal conductance, all of which decreased remarkably at midday. A “go for broke” strategy is probably practiced by Uc which try to provide the growth they need to become established, but with a great risk of mortality. Um used a more conservative strategy by effectively regulating the instantaneous water-use efficiency, and maintaining both stable gas exchange levels and significantly higher long-term water-use efficiency. Uj endured and adapted to drought conditions by developing steeper leaf angles, denser leaf pubescence and more stomata than differently aged plants. Our findings illustrate that significantly different water-use strategies were developed by U. pumila trees as they grew from seedlings to maturity, which were based on different water sources.  相似文献   

8.
Interspecific hybridisation and gene flow from cultivated plants may have profound effects on the evolution of wild species. Considering the cultural history and past use of Ulmus minor and Ulmus glabra trees in Flanders (northern Belgium), we investigated the extent of human impact on the genetic variation of the remaining, supposedly indigenous elm populations. We therefore examined the rate of interspecific hybridisation, which is expected to be higher under human influence, the occurrence of clones within and among locations, the presence of cultivars and their possible offspring. Based on results produced using 385 amplified fragment length polymorphic (AFLP) markers, 46 % of the 106 investigated Flemish elms appeared to be F1 hybrids or backcrosses to one of the parent species, while no F2 hybrids (F1?×?F1 progeny) were found. Clonality was mainly found among U. minor and hybrids, which are more likely to form root suckers or sprouts as opposed to U. glabra. The majority of the studied locations (76 % of the locations with multiple samples) showed evidence of clonal reproduction. Several, sometimes distant, locations shared a multilocus lineage. We also found indications of gene flow from cultivated elms into native species. It is conceivable that reproductive material has been moved around extensively, obscuring the natural genetic structure of the elm populations. The results help guide the Flemish elm genetic resources conservation programme.  相似文献   

9.
导管的大小、形态和彼此连接方式的不同对水分运输和应力支撑有重要作用。本研究采用树脂铸型法对毛白杨(Populus tomentosa Carr)、旱柳(Salix matsudana)、榆树(Ulmus pumila L.)和紫藤(Wisteria sinensis)4个树种的导管分子三维结构进行比较研究,分析导管结构特征和其水分输运的关系。导管内壁结构被印在铸型的表面上,将铸型放在扫描电子显微镜下观察。结果表明:旱柳和毛白杨的导管分子特征较接近,与榆树和紫藤存在明显差异,相对于榆树和紫藤较原始。毛白杨和旱柳的导管分子长、侧壁纹孔少,有利于水分的输运。榆树和紫藤的导管分子相对宽,穿孔板几乎平直,更加利于水分的输运。榆树和紫藤的细导管分子有螺纹加厚,可增加导管的机械强度,减少管内产生空穴化的风险,从而保证水分更有效的运输。  相似文献   

10.
Within-species and within-stem variation in vessel diameter and total vessel length were examined using the latex paint method on six species of tropical and subtropical lianas (woody vines). Narrow vessels were almost always rather short, but wide vessels ranged from short to long. Within Pithecoctenium crucigerum, larger diameter stems tended to have longer as well as wider vessels, with a maximum vessel length and width of 6.25 m and 366 μm, respectively. Within stems of Saritaea magnifica, P. crucigerum, Hippocratea volubilis, and Vitis rotundifolia, narrow vessels had lower mean, median, and maximum vessel lengths than wide vessels. Vessels with intermediate diameters tended to have intermediate lengths. In Stigmaphyllon ellipticum and Bauhinia fassoglensis the outer system of secondary xylem tended to have longer as well as wider vessels than the inner system. Those narrow vessels (<50 μm) that did occur in the outer system were short (<0.20 m), and were similar in length and diameter to those of the inner system.  相似文献   

11.
Summary Vessel dimensions (total diameter and length) were determined in tropical and subtropical plants of different growth forms with an emphasis upon lianas (woody vines). The paint infusion and compressed air methods were used on 38 species from 26 genera and 16 families in the most extensive survey of vessel length made to date. Within most stems there was a skewed frequency distribution of vessel lengths and diameter, with many short and narrow vessels and few long and wide ones. The longest vessel found (7.73 m) was in a stem of the liana (woody vine) Pithecoctenium crucigerum. Mean vessel length for 33 species of lianas was 0.38 m, average maximum length was 1.45 m. There was a statistically significant inter-species correlation between maximum vessel length and maximum vessel diameter. Among liana stems and among tree+shrub stems there were statistically significant correlations between stem xylem diameter and vessel dimensions. Lianas with different adaptations for climbing (tendril climbers, twiners, scramblers) were similar in their vessel dimensions except that scramblers tended to have shorter (but not narrower) vessels. Within one genus, Bauhinia, tendril climbing species had greater maximum vessel lengths and diameters than tree and shrub species. The few long and wide vessels of lianas are thought to hydraulically compensate for their narrow stem diameters. The many narrow and short vessels, which are present in the same liana stems, may provide a high resistance auxiliary transport system.  相似文献   

12.

Premise of the Study

Dimensions and spatial distribution of vessels are critically important features of woody stems, allowing for adaptation to different environments through their effects on hydraulic efficiency and vulnerability to embolism. Although our understanding of vessel development is poor, basipetal transport of auxin through the cambial zone may play an important role.

Methods

Stems of Populus tremula ×alba were treated with the auxin transport inhibitor N‐1‐naphthylphthalamic acid (NPA) in a longitudinal strip along the length of the lower stem. Vessel lumen diameter, circularity, and length; xylem growth; tension wood area; and hydraulic conductivity before and after a high pressure flush were determined on both NPA‐treated and control plants.

Key Results

NPA‐treated stems formed aberrant vessels that were short, small in diameter, highly clustered, and angular in cross section, whereas xylem formed on the untreated side of the stem contained typical vessels that were similar to those of controls. NPA‐treated stems had reduced specific conductivity relative to controls, but this difference was eliminated by the high‐pressure flush. The control treatment (lanolin + dimethyl sulfoxide) reduced xylem growth and increased tension wood formation, but never produced the aberrant vessel patterning seen in NPA‐treated stems.

Conclusions

These results are consistent with a model of vessel development in which basipetal polar auxin transport through the xylem‐side cambial derivatives is required for proper expansion and patterning of vessels and demonstrate that reduced auxin transport can produce stems with altered stem hydraulic properties.  相似文献   

13.

Key message

By using a simple and rapid technique, the degree of vessel deviations in the stem xylem could be evaluated and compared between different plant species. The degree of vessel deviations was suggested to be one of the main factors determining the hydraulic integration in woody stems.

Abstract

The main objective of this study was to investigate the role of vessel tangential deviations in determining both intervessel connectivity and patterns of hydraulic integration in woody stems of six Fabaceae trees. It was hypothesized that increasing the degree of vessel deviations would increase lateral contacts between vessels thereby increasing hydraulic integration within stems. Species-specific differences in vessel deviations and intervessel connectivity were quantified by following the movement of an apoplastic dye that was injected to a limited number of vessels. Intervessel connectivity was measured as the number of laterally connected vessels, whereas the degree of vessel deviations was measured as the magnitude of divergence of a group of neighboring vessels. Hydraulic integration index was determined as the ratio of tangential to axial conductance. Results showed that the degree of vessel deviations differed significantly between species. Acacia cyanophylla showed the lowest degree of vessel deviations (1.75 ± 0.33), while the highest degree was observed in Acacia etbaica (2.48 ± 0.26). Hydraulic integration was positively correlated more with vessel deviations than with intervessel connectivity. Only a very weak positive correlation was observed between vessel deviations and intervessel connectivity. Tangential deviations in the course of vessels might be one of the main factors determining the patterns of integrated–sectored transport in woody stems and, consequently, might have ecological implications in terms of plant adaptation to various ecological conditions. This study confirmed the complexity of interactions in the xylem hydraulic system.  相似文献   

14.
Maximum vessel diameters were examined in the secondary xylem of stems of Gnetum of various sizes. One tree (G. gnemon) and 13 liana species were compared. In three species, vessel length distributions were determined by the latex paint method, and showed many short and fewer long vessels. Latex and compressed air methods, used to find the maximum vessel lengths, showed that maximum vessel lengths were similar for three species of Gnetum. In old stems, mean and maximum vessel diameters tended to be greater in lianas than in the tree species. The skewed distribution of vessel lengths and the trend of wider vessels in lianas as compared to trees were similar to those distributions and trends described previously for angiosperms. In random samples of macerated wood of three species, simple perforation plates were most common in vessel members of all species. Foraminate and modified foraminate perforations were less frequent. Average diameter of vessel members with either foraminate or modified foraminate perforations was less than for those with simple perforations. The resemblance of Gnetum vessels to those of angiosperm trees and vines is most likely a case of convergent evolution (homoplasy) in xylem characteristics.  相似文献   

15.

Background and Aims

The bacterium Xylella fastidiosa (Xf), responsible for Pierce''s disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf.

Methods

Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant.

Key Results

There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant ‘Sylvaner’ had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement.

Conclusions

Stem–leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed.  相似文献   

16.
Although precipitation plays a central role in structuring Africa’s miombo woodlands, remarkably little is known about plant-water relations in this seasonally dry tropical forest. Therefore, in this study, we investigated xylem vulnerability to cavitation for nine principal tree species of miombo woodlands, which differ in habitat preference and leaf phenology. We measured cavitation vulnerability (Ψ50), stem-area specific hydraulic conductivity (K S), leaf specific conductivity (K L), seasonal variation in predawn water potential (ΨPD) and xylem anatomical properties [mean vessel diameter, mean hydraulic diameter, mean hydraulic diameter accounting for 95 % flow, and maximum vessel length (V L)]. Results show that tree species with a narrow habitat range (mesic specialists) were more vulnerable to cavitation than species with a wide habitat range (generalists). Ψ50 for mesic specialists ranged between ?1.5 and ?2.2 MPa and that for generalists between ?2.5 and ?3.6 MPa. While mesic specialists exhibited the lowest seasonal variation in ΨPD, generalists displayed significant seasonal variations in ΨPD suggesting that the two miombo habitat groups differ in their rooting depth. We observed a strong trade-off between K S and Ψ50 suggesting that tree hydraulic architecture is one of the decisive factors setting ecological boundaries for principal miombo species. While vessel diameters correlated weakly (P > 0.05) with Ψ50, V L was positively and significantly correlated with Ψ50. ΨPD was significantly correlated with Ψ50 further reinforcing the conclusion that tree hydraulic architecture plays a significant role in species’ habitat preference in miombo woodlands.  相似文献   

17.
 Stem xylem features in two evergreen Quercus species (Q. coccifera and Q. ilex) and a deciduous one (Q. faginea) were analysed along an Atlantic-Mediterranean climatic gradient in which rainfall and winter cold experience strong variation. Mean maximum vessel diameter, vessel density, vessel element length, xylem transverse sectional area, Huber value (xylem transverse sectional area per leaf area unit), theoretical leaf specific conductivity (estimated hydraulic conductance per leaf area unit) and total leaf area were determined in 3-year-old branches. Q. faginea presented the widest vessels and the highest theoretical leaf specific conductivity while Q. coccifera showed the lowest total leaf area and the highest Huber value. Studied features did not exhibit significant correlations with mean minimum January temperature in any species but did show significant relationships with rainfall. In Q. coccifera, mean maximum vessel diameter, vessel element length and theoretical leaf specific conductivity increased with higher rainfall while vessel density decreased. Mean maximum vessel diameter and total leaf area in Q. ilex increased with precipitation whereas variables of Q. faginea did not show any significant trend. Results suggest that aridity, rather than minimum winter temperature, controls stem xylem responses in the studied evergreen species. Q. faginea traits did not show any response to precipitation, probably because this species develops deep roots, which in turn makes edaphic and topographic factors more important in the control of soil water availability. In response to aridity Q. coccifera only exhibits adjustment at a xylem level by reducing its water transport capacity through a reduction of vessel diameter without changing the amount of xylem tissue or foliage, whereas Q. ilex adjusts its water transport capacity in parallel to the foliage area. Received: 13 January 1997 / Accepted: 8 April 1997  相似文献   

18.
Wood anatomy characters of the Eurasian/North American half-shrub Krascheninnikovia ceratoides were investigated on plants from different parts of the wide distribution area. The secondary xylem is developed as result of anomalous secondary thickening. The vessels are small (commonly <50 μm) and the secondary xylem is rayless. Differences in vessel diameter exist between the main axis, basal branches and flowering shoots. The maximum as well as the minimum vessel diameter in the flowering shoots is significantly smaller compared to the basal branches, as well as in the main axis in all provenances. The length of thick-walled libriform fibre cells varies between the main axis and the basal branches of the same plant individual, but in the short main axis the length of libriform fibre cells is relatively constant (193-217 μm), independent of provenance and climate. Obviously, the length of libriform fibre cells is a conservative character and dependent on plant size. The vessel diameter is a more sensitive parameter for ecological studies. It varies more clearly, considering the vessel position in the plant axis system, in relation with climate differences of the provenances of the examined plants.Plants from a temperate, semi-humid climate have the largest vessel diameter in basal branches and flowering shoots, while the vessel diameter of plants from an arid temperate climate in Central Asia is smallest. The vessel diameters depend not only on climate, but also on the position in the axial system of the plants. There is a trade-off between average vessel number and their maximum diameter in flowering shoots of populations from Russia and Mongolia. Thus, vessel diameters depend on both, position in the axial system of the plant and climatic conditions.  相似文献   

19.
The general wood structure, vessel size and distribution along the stem xylem radius and in petioles were studied in Laurus azorica trees living in a Tenerife laurel forest. The fractions of volume occupied by dry matter, water and air in percentage of wood fresh volume were also studied. The wood showed a diffuse-porous structure, with solitary vessels or vessels somewhat clustered in small radially oriented groups. Vessels had a diameter ranging from 20 to 130 µm. This diameter was minimal close to the pith, increased more than 2-fold with age, and reached its maximum width close to the cambium. Vessel density decreased from 36 vessels mm-2 near the pith to about 13 vessels mm-2 near the cambium. Accordingly, the lumen area was small in young xylem close to the pith (0.0015 mm2), reaching a value 5 times larger (0.007 mm2) near the cambium than in the centre of the stem. Lumen area of vessels in petioles was about 1.5% of petiole cross-sectional area and thus much lower than in stems. Mean hydraulic diameter of these vessels was about 20 µm, and mean vessel density about 136 per petiole. There were only small differences in proportions of dry matter, water and air along stem radius. The relevance of each one of these fractions in the wood is discussed as evidence of the possible existence of a number of embolized vessels dispersed in the total functional cross-sectional area of the xylem.  相似文献   

20.
Summary Wood structure and function was investigated in different growth forms of temperate honeysuckles (Lonicera spp.). All three species had many narrow vessels and relatively few wide ones, with the measured K h (flow rate/pressure gradient) approximately 24–55% of the theoretical K h predicted by Poiseuille's law. Only the twiner, Lonicera japonica, had some vessels greater than 50 m in diameter. The twiner also had the narrowest stem xylem diameters, suggesting the greater maximum vessel diameter hydraulically compensated for narrow stems. Conversely, the free-standing shrub, L. maackii, had the greatest annual increments of xylem but the least percent conductive xylem implying that a great portion of the wood was involved with mechanical support. The scrambler, L, sempervirens had low maximum vessel diameter, high Huber values (= xylem area/leaf area), and low specific conductivities (= measured K h/xylem area), much like the shrub. The greatest vessel frequency occurred in the scrambler (901 vessels · mm-2), the highest thus far recorded in vines. The lowest Huber value and highest specific conductivity occurred in the twiner, suggesting little self-support but relatively efficient water conduction. LSC (= measured K h/leaf area) and maximum vessel diameter of Lonicera vines were near the low end of the range for vines in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号