首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The herbicide sulfometuron methyl (SM) inhibited growth of some methanococci. Of 28 strains tested, the growth of 7 was completely inhibited by 0.55 mM SM. Growth of an additional 14 strains was partially inhibited, and the growth of 7 strains was unaffected by this concentration of SM. In some cases, the branched-chain amino acids protected growth. Growth inhibition was correlated with the Ki for SM of acetolactate synthase (ALS). For the enzymes from bacteria representative of the sensitive, partially resistant, and resistant methanococci (Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae, respectively), the Ki for SM was 0.0012, 0.34, and greater than 1.0 mM, respectively. Inhibition was uncompetitive with respect to pyruvate. Based on these observations, ALS appeared to be the major if not the sole site of action of SM in the methanococci. The sensitivity of the ALS from these three methanococci to feedback inhibition by branched-chain amino acids was also quite different. Although all three were sensitive to feedback inhibition by valine, the Ki varied 20-fold, from 0.01 to 0.22 mM. Moreover, only the ALS from M. maripaludis was sensitive to inhibition by leucine, and the Ki was 1.8 mM. The Ki for isoleucine for the ALS from both M. maripaludis and M. voltae was about 0.1 mM. The ALS from M. aeolicus was not inhibited by isoleucine. In other respects, the ALSs from the methanococci were very similar. After dialysis, thiamine pyrophosphate but not FAD and Mg2+ was required for maximal activity, and they were all rapidly inactivated by oxygen. Although the methanococcal ALSs exhibited diverse properties, the range of catalytic and regulatory properties closely resembled those of the eubacterial enzymes.  相似文献   

2.
Methanococcus voltae is a methanogenic bacterium which requires leucine, isoleucine, and acetate for growth. However, it also can synthesize these amino acids, and it is capable of low levels of autotrophic acetyl coenzyme A (acetyl-CoA) biosynthesis. When cells were grown in the presence of 14CO2, as well as in the presence of compounds required for growth, the alanine found in the cellular protein was radiolabeled. The percentages of radiolabel in the C-1, C-2, and C-3 positions of alanine were 64, 24, and 16%, respectively. The incorporation of radiolabel into the C-2 and C-3 positions of alanine demonstrated the autotrophic acetyl-CoA biosynthetic pathway in this bacterium. Additional evidence was obtained in cell extracts in which autotrophically synthesized acetyl-CoA was trapped into lactate. In these extracts, both CO and CH2O stimulated acetyl-CoA synthesis. 14CH2O was specifically incorporated into the C-3 of lactate. Cell extracts of M. voltae also contained low levels of CO dehydrogenase, 13 nmol min-1 mg of protein-1. These results further confirmed the presence of the autotrophic acetyl-CoA biosynthetic pathway in M. voltae. Likewise, 14CO2 and [U-14C]acetate were also incorporated into leucine and isoleucine during growth. During growth with [U-14C]leucine or [U-14C]isoleucine, the specific radioactivity of these amino acids in the culture medium declined, and the specific radioactivities of these amino acids recovered from the cellular protein were 32 to 40% lower than the initial specific radioactivities in the medium.Cell extracts of M. voltae also contained levels of isopropyl malate synthase, an enzyme that is specific to the leucine biosynthetic pathway, of 0.8 nmol min-1 mg of protein-1. Thus, M. voltae is capable of autotrophic CO2 fixation and leucine and isoleucine biosynthesis.  相似文献   

3.
During growth of the methanogenic archaeon Methanococcus maripaludis on alanine as the sole nitrogen source under H(2)/CO(2), alanine was incorporated into amino acids derived from pyruvate including leucine, isoleucine, and valine. Thus, growth with alanine was an efficient means of labeling intracellular pools of pyruvate in this lithotroph. Cells were grown with 18% [U-(13)C]alanine, and the distribution of the isotope in the branched-chain amino acids was determined by (13)C-NMR. Carbons derived from pyruvate contained 14.5% (13)C, indicating that most of the cellular pyruvate was obtained from alanine. In contrast, carbons derived from acetyl-CoA contained only 3-5% (13)C, indicating that only small amounts of acetyl-CoA were formed from pyruvate. Thus, autotrophic acetyl-CoA biosynthesis continued even in the presence of an organic carbon source. Moreover, the labeling of acetyl-CoA was lower than would be predicted if pyruvate was a C-1 donor for acetyl-CoA biosynthesis. Carbon derived from the C-1 of acetyl-CoA contained less (13)C than carbon derived from the C-2 of acetyl-CoA, and this difference was attributed to the acetyl-CoA:CO(2) exchange activity of acetyl-CoA synthase. No enrichment was detected for the C-1 of valine, which was derived from the C-1 of pyruvate. This result was attributed to the pyruvate:CO(2) exchange activity of pyruvate oxidoreductase and may have important implications for isotope tracer studies utilizing pyruvate. Lastly, these results demonstrate that the breakdown of pyruvate by methanococci is very limited even under conditions where it is the sole nitrogen and major carbon source.  相似文献   

4.
NMR spectroscopy was used to determine the labeling patterns of the ribose moieties of ribonucleosides purified from Methanospirillum hungatei, Methanococcus voltae, Methanobrevibacter smithii, Methanosphaera stadtmanae, Methanosarcina barkeri and Methanobacterium bryantii labeled with 13C-precursors. In most methanogens tested ribose was labeled in a manner consistent with the operation of the oxidative branch of the pentose phosphate pathway. In contrast, transaldolase and transketolase reactions typical of a partial nonoxidative pentose phosphate pathway are hypothesized to explain the different labeling patterns and enrichments of carbon atoms observed in the ribose moiety of Methanococcus voltae. The source of erythrose 4-phosphate needed for the transaldolase reaction proposed in Methanococcus voltae, and for biosynthesis of aromatic amino acids in methanogenic bacteria in general, was assessed. Phenylalanine carbon atom C-7 was labeled by [1-13C]pyruvate in Methanospirillum hungatei, Methanococcus voltae, and Methanococcus jannaschii, the only methanogens which incorporated sufficient label from pyruvate for testing. Reductive carboxylation of a triose precursor (derived from pyruvate) to synthesize erythrose 4-phosphate is consistent with the labeling patterns observed in phenylalanine and ribose.Abbreviation TCA Tricarboxylic acid Issued as NRCC Publication No. 37382  相似文献   

5.
The levels of seven water-soluble vitamins in Methanobacterium thermoautotrophicum, Methanococcus voltae, Escherichia coli, Bacillus subtilis, Pseudomonas fluorescens, and Bacteroides thetaiotaomicron were compared by using a vitamin-requiring Leuconostoc strain. Both methanogens contained levels of folic acid and pantothenic acid which were approximately two orders of magnitude lower than levels in the nonmethanogens. Methanobacterium thermoautotrophicum contained levels of thiamine, biotin, nicotinic acid, and pyridoxine which were approximately one order of magnitude lower than levels in the nonmethanogens. The thiamine level in Methanococcus voltae was approximately one order of magnitude lower than levels in the nonmethanogens. Only the levels of riboflavin (and nicotinic acid and pyridoxine in Methanococcus voltae) were approximately equal in the methanogens and nonmethanogens. Folic acid may have been present in extracts of methanogens merely as a precursor, by-product, or hydrolysis product of methanopterin.  相似文献   

6.
In the absence of H2, Methanococcus spp. utilized pyruvate as an electron donor for methanogenesis. For Methanococcus voltae A3, Methanococcus maripaludis JJ1, and Methanococcus vannielii, typical rates of pyruvate-dependent methanogenesis were 3.4, 2.8, and 3.9 nmol min-1 mg-1 cell dry wt, respectively. These rates were 1–4% of the rates of H2-dependent methanogenesis. For M. voltae, the concentration of pyruvate required for one-half the maximum rate of methanogenesis was 7 mM, and pyruvate-dependent methanogenesis was linear for 3 days. Radiolabeled acetate was formed from [3-14C]pyruvate, and the stoichiometry of pyruvate consumed per acetate produced was 1.12±0.27. The stoichiometry of pyruvate consumed per CH4 produced was 3.64±0.34. These values are close to the expected values of 1 acetate and 4 CH4. Although 10–30% of total cell carbon could be obtained from exogenous pyruvate during growth with H2, pyruvate did not replace the nutritional requirement for acetate in Methanococcus voltae A3 or two acetate auxotrophs of Methanococcus maripaludis, JJ6 and JJ7. These results suggest that pyruvate was not oxidized in the presence of H2. The inability to oxidize pyruvate during H2-dependent methanogenesis would prevent a futile cycle of pyruvate oxidation and biosynthesis during autotrophic growth.  相似文献   

7.
Thermothrix thiopara is isolated from hot sulfur springs. It occurs in situ at a temperature of 72°C, a pH of 7.0, and an HS- concentration of 17.4 μmol/liter (0.8 ppm). The organism was capable of autotrophic growth. Sulfite, sulfur, and polythionates were formed and subsequently degraded to sulfate during growth with thiosulfate as the sole energy source. Thiosulfate was oxidized by the polythionate pathway, and the stoichiometry of growth on thiosulfate was determined. The organism was also capable of heterotrophic growth in amino acids and simple sugars. A source of reduced sulfur (methionine, glutathione) was required for heterotrophic growth. Growth occurred aerobically or anaerobically with nitrate as a terminal oxidant. Both nitrous oxide and dinitrogen were produced. At 73°C the maximum autotrophic growth rate in batch culture using thiosulfate was 0.56 generation per h. Under the same conditions in continuous culture, washout occurred at a dilution rate of 0.3 to 0.4 per h, corresponding to a cellular growth rate of 0.43 to 0.58 generation per h. This was nearly three times the growth rate for Thiobacillus denitrificans. T. thiopara is gram negative. It was also found to be both lysozyme and penicillin susceptible. As a result, this organism cannot be considered an archaebacterium.  相似文献   

8.
Microbial Thiocyanate Utilization under Highly Alkaline Conditions   总被引:3,自引:1,他引:2       下载免费PDF全文
Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a “cyanate pathway” in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate.  相似文献   

9.
Nutrition and carbon metabolism of Methanococcus voltae.   总被引:54,自引:27,他引:27       下载免费PDF全文
Methanococcus voltae is a heterotrophic, H2-oxidizing methanogenic bacterium. In complex medium, this bacterium has a doubling time of 1.2 h at its temperature optimum of 38 degrees C. In defined medium, optimal growth is obtained with 0.75 mM isoleucine, 0.75 mM leucine, 2.5 mM acetate, 5 mM NH4Cl, 84 mM MgSO4, 0.4 M NaCl, 1 mM CaCl2, 10 microM Fe2O3, and 0.2 microM NiCl2. In addition, pantothenate, sodium selenate, and cobalt stimulate growth. Optimal growth is obtained between pH 6.0 and 7.0 with either H2 or formate as the electron donor. The volatile fatty acids 2-methylbutyrate and isovalerate can substitute for isoleucine and leucine, respectively. Cellular carbon is derived from acetate (31%), isoleucine (22%), leucine (25%), and carbon dioxide (23%). The amino acids and fatty acids are incorporated almost exclusively into protein. A comparison of the incorporation of U-14C-amino acids and 1-14C-fatty acids indicated that the fatty acids are degraded during incorporation into cell protein. The distribution of carbon from the amino acids suggests that acetyl coenzyme A is not a major intermediate in the degradation of these compounds. Thus, M. voltae may convert isoleucine and leucine to other amino acids by a unique mechanism. The lipid carbon is derived largely from acetate. Thus, the isoprenoid lipids are synthesized de novo from acetate rather than by degradation of leucine. The carbon in the nucleic acids is derived from carbon dioxide (45%), the C-1 of acetate (25%), the C-2 of acetate (22%), and isoleucine and leucine (7%). This labeling pattern is consistent with known biochemical pathways.  相似文献   

10.
Growth and Plating Efficiency of Methanococci on Agar Media   总被引:20,自引:13,他引:7       下载免费PDF全文
Plating techniques for cultivation of methanogenic bacteria have been optimized for two members of the genus Methanococcus. Methanococcus maripaludis and Methanococcus voltae were cultivated on aerobically and anaerobically prepared agar media. Maintenance of O2 levels below 5 μl/liter within an anaerobic glove box was necessary during plating and incubation for 90% recovery of plated cells. Under an atmosphere of H2, CO2, and H2S (79:20:1), 2 to 3 days of incubation at 37°C were sufficient for the formation of visible colonies. The viability of plated cells was significantly affected by the growth phase of the culture, H2S concentration, and the volume of medium per plate. In addition, colony size of methanococci was affected by agar type, as well as by the concentrations of agar, H2S, and bicarbonate.  相似文献   

11.
Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis of aromatic amino acids (AroAAs) and p-aminobenzoic acid (PABA) was demonstrated in M. maripaludis. Moreover, PABA was shown to be derived from an early intermediate in AroAA biosynthesis and not from chorismate. Following metabolic labelling with [U-(13)C]-acetate, the expected enrichments for phenylalanine and arylamine derived from PABA were observed. DKFP pathway activity was reduced following growth with aryl acids, an alternative source of the AroAAs. Lastly, a deletion mutant of aroA', which encodes the first step in the DKFP pathway, required AroAAs and PABA for growth. Complementation of the mutants by an aroA' expression vector restored the wild-type phenotype. In contrast, a deletion of aroB', which encodes the second step in the DKFP pathway, did not require AroAAs or PABA for growth. Presumably, methanococci contain an alternative activity for this step. These results identify the initial reactions of a new pathway for the biosynthesis of PABA in methanococci.  相似文献   

12.
Methanococcus voltae contains a membrane-associated ATPase whose structural gene has been sequenced. The gene encodes 565 amino acids and includes a 12-amino-acid N-terminal sequence which is not present in the purified enzyme. On the basis of its amino acid sequence, the M. voltae enzyme is unrelated to previously characterized ATPases.  相似文献   

13.
N-Ethylglutamate (NEG) was detected in Escherichia coli BL21 cells grown on LB broth, and it was found to occur at a concentration of ∼4 mM in these cells under these conditions. The same cells grown on M9 glucose medium contained no detectable amount of NEG. Analysis of the LB broth showed the presence of NEG, a compound never before reported as a natural product. Isotope dilution analysis showed that it occurred at a concentration of 160 μM in LB broth. Analyses of yeast extract and tryptone, the organic components of LB broth, both showed the presence NEG. It was demonstrated that NEG can be generated during the autolysis of the yeast used in the preparation of the yeast extract. Growth of these E. coli cells in LB broth prepared in deuterated water showed no incorporation of deuterium into NEG, demonstrating that E. coli cells did not generate the NEG. Cell growth rates were not affected by the addition of 5 mM NEG to either LB or M9 glucose medium. l-[ethyl-2H4]NEG was found to be readily incorporated into the cells and metabolized by the cells. From these results, it was concluded that all of the NEG present in the cells was taken up from the medium. NEG could serve as the sole nitrogen source for E. coli when grown on M9 glucose medium in the presence of glucose but could not serve as the sole carbon source on M9 medium in the absence of glucose.During work on developing methods for the analysis of the amino acids generated by recombinant archaeal mutases, I developed procedures for the recovery and analysis of the free amino acids present in cell extracts of Escherichia coli. When these methods were applied to analysis of E. coli grown on LB broth, I always found a large amount of an unknown amino acid. Here I report on the identification of this amino acid as N-ethylglutamate (NEG). NEG has never been reported as a natural product. I demonstrate that NEG is readily taken up by E. coli and can serve as the sole source of nitrogen when the cells are grown on M9 glucose medium.  相似文献   

14.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

15.
The nitrogen requirements of 96Gluconobacter, 55Acetobacter and 7Frateuria strains were examined. Only someFrateuria strains were able to grow on 0.5% yeast extract broth or 0.5% peptone broth. In the presence ofd-glucose ord-mannitol as a carbon source, ammonium was used as the sole source of nitrogen by all three genera. With ethanol, only a fewAcetobacter strains grew on ammonium as a sole nitrogen source. Singlel-amino acids cannot serve as a sole source of carbon and nitrogen for growth ofGluconobacter, Acetobacter orFrateuria. The singlel-amino acids which were used by most strains as a sole nitrogen source for growth are: asparagine, aspartic acid, glutamine, glutamic acid, proline and alanine. SomeAcetobacter andGluconobacter strains deaminated alanine, asparagine, glutamic acid, threonine, serine and proline. NoFrateuria strain was able to develop on cysteine, glycine, threonine or tryptophan as a sole source of nitrogen for growth. An inhibitory effect of valine may explain the absence of growth on this amino acid. No amino acid is “essential” forGluconobacter, Acetobacter orFrateuria.  相似文献   

16.
The moderately thermophilic iron-oxidizing bacterium strain TI-1, which lacks enzyme systems involved in CO2 fixation, grows at 45°C in Fe2+ medium supplemented with yeast extract to give a maximum cell growth of 1.0 × 108 cells per ml, but does not grow in Fe2+ medium without yeast extract. To elucidate the physiology of the strain, a synthetic medium was developed. It was found that the best synthetic medium was Fe2+-6AA, containing Fe2+, salts, and the following six l-amino acids: alanine, aspartic acid, glutamic acid, arginine, serine, and histidine. In this medium, strain TI-1 showed a maximum cell growth of 10 × 108 cells/ml. The six amino acids in the Fe2+-6AA medium were used not only as a carbon source but also as a source of nitrogen. Inorganic nitrogen sources, such as ammonium ion, hydrazine, hydroxylamine, nitrite, and nitrate, were not used as a sole source of nitrogen, but rather strongly inhibited the utilization of the six amino acids at 1 mM. In the Fe2+ (10 mM)-6AA medium supplemented with 21 mM Fe3+, reduction of Fe3+ to Fe2+ that was dependent on the added amino acids was observed, suggesting another role of the amino acids in the growth of strain TI-1. Washed, intact cells of strain TI-1 had the activity to reduce Fe3+ to Fe2+.  相似文献   

17.
The polypeptides of the proteolytic rumen bacteriumBacteroides ruminicola R8/4 grown in the presence of either leaf Fraction 1 protein, bovine serum albumin, or Bactocasitone as sole nitrogen source were separated by SDS-polyacrylamide gel electrophoresis. Over 40 polypeptides were resolved; the pattern for organisms grown on Fraction 1 protein was similar but not identical to that of the serum albumin and Bactocasitone-grown bacteria. All the bacterial polypeptides were distinguishable from the polypeptides of Fraction 1 protein (and serum albumin). The stained pattern was the same for organisms sampled at intervals during the growth of a batch culture. After incubation of the growing organisms with [14C]-Fraction 1 protein, all the bacterial polypeptides were labeled. Bacteria grown in the presence of nonlabeled Fraction 1 protein and a mixture of [14C]-labeled amino acids incorporated label into all the polypeptides; the bacteria did not grow in the absence of intact protein, and then virtually no label was incorporated from the amino acid mixture.  相似文献   

18.
In a medium containing ammonia, proteose peptone, and cysteine as nitrogen sources, 17 of 24 Bacteroidaceae strains, 3 of Selenomonas strains, 1 of 7 curved rods, 3 of 7 Spirochaetaceae strains, 8 of 20 Eubacterium strains, 8 of 13 Peptococcaceae strains, 3 of 4 Clostridium strains, 19 of 20 Enterobacteriaceae strains, and 1 of 8 Streptococcus strains utilized ammonia nitrogen preferentially to proteose peptone nitrogen. To determine the ability of intestinal microbes to synthesize amino acids from ammonia, ammonia utilization by Bacteroides ruminicola strain 9 was studied in defined media containing ammonia and other nitrogen sources. In another medium containing ammonia, proteose peptone, and cysteine as nitrogen sources, ammonia was preferentially utilized even when the proteose peptone nitrogen content was eight times greater than that of ammonia nitrogen. In a medium containing ammonia, an amino acid, and cysteine, the lowest uptake of ammonia nitrogen was observed when the medium contained aspartic acid, glutamic acid, threonine, or alanine; but ammonia was utilized more effectively than any of the amino acids. Incorporation of 15N from [15N]ammonia into bacterial amino acids was studied. 15N was incorporated into every amino acid of B. ruminicola strain 9, and the highest uptake was observed in aspartic acid and alanine.  相似文献   

19.
Heterotrophic growth of the facultatively chemolithoautotrophic acidophile Thiobacillus acidophilus was studied in batch cultures and in carbon-limited chemostat cultures. The spectrum of carbon sources supporting heterotrophic growth in batch cultures was limited to a number of sugars and some other simple organic compounds. In addition to ammonium salts and urea, a number of amino acids could be used as nitrogen sources. Pyruvate served as a sole source of carbon and energy in chemostat cultures, but not in batch cultures. Apparently the low residual concentrations in the steady-state chemostat cultures prevented substrate inhibition that already was observed at 150 M pyruvate. Molar growth yields of T. acidophilus in heterotrophic chemostat cultures were low. The Y max and maintenance coefficient of T. acidophilus grown under glucose limitation were 69 g biomass · mol–1 and 0.10 mmol · g–1 · h–1, respectively. Neither the Y max nor the maintenance coefficient of glucose-limited chemostat cultures changed when the culture pH was increased from 3.0 to 4.3. This indicates that in T. acidophilus the maintenance of a large pH gradient is not a major energy-requiring process. Significant activities of ribulose-1,5-bisphosphate carboxylase were retained during heterotrophic growth on a variety of carbon sources, even under conditions of substrate excess. Also thiosulphate- and tetrathionate-oxidising activities were expressed under heterotrophic growth conditions.  相似文献   

20.
Archaeal protein trafficking is a poorly characterized process. While putative type I signal peptidase genes have been identified in sequenced genomes for many archaea, no biochemical data have been presented to confirm that the gene product possesses signal peptidase activity. In this study, the putative type I signal peptidase gene in Methanococcus voltae was cloned and overexpressed in Escherichia coli, the membranes of which were used as the enzyme source in an in vitro peptidase assay. A truncated, His-tagged form of the M. voltae S-layer protein was generated for use as the substrate to monitor the signal peptidase activity. With M. voltae membranes as the enzyme source, signal peptidase activity in vitro was optimal between 30 and 40°C; it was dependent on a low concentration of KCl or NaCl but was effective over a broad concentration range up to 1 M. Processing of the M. voltae S-layer protein at the predicted cleavage site (confirmed by N-terminal sequencing) was demonstrated with the overexpressed archaeal gene product. Although E. coli signal peptidase was able to correctly process the signal peptide during overexpression of the M. voltae S-layer protein in vivo, the contribution of the E. coli signal peptidase to cleavage of the substrate in the in vitro assay was minimal since E. coli membranes alone did not show significant activity towards the S-layer substrate in in vitro assays. In addition, when the peptidase assays were performed in 1 M NaCl (a previously reported inhibitory condition for E. coli signal peptidase I), efficient processing of the substrate was observed only when the E. coli membranes contained overexpressed M. voltae signal peptidase. This is the first proof of expressed type I signal peptidase activity from a specific archaeal gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号