首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mountain environmental stresses result in increased formation of hydrogen peroxide (H2O2) and accumulation of malondialdehyde (MDA) in leaves of Polygonum viviparum. The activities of several antioxidative system enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and the contents of several non-enzymatic antioxidants such as reduced form of ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) were investigated in leaves of P. viviparum, which were collected from three altitudes (2,200, 3,200, and 3,900 m) of Tianshan Mountain in China. The activities of these four antioxidative enzymes were accompanied by increases of H2O2 levels from 2,200 to 3,200 m. However, the activities of CAT and POD were decreased, whereas the activities of SOD and GR continually increased at 3,900 m. Analyses of isoforms of SOD, CAT, POD, and GR showed that the leaves of P. viviparum exposed different altitude conditions are capable of differentially altering the intensity. Additionally, two new isoforms of SOD were detected at 3900 m. A continual increase in the ASC, ASC to DHA ratio, GSH and GSH/[GSH + GSSG] ratio, and the activity of DHAR were observed in leaves of P. viviparum with the elevation of altitude. These results suggest that the higher contents of ASC, GSH as well as an increase in reduced redox state may be essential to antioxidation processes in the leaves of P. viviparum, whereas antioxidant enzymes system is a cofactor in the processes.  相似文献   

2.
The influence of varied Mg supply (10-1000 micromolar) and light intensity (100-580 microeinsteins per square meter per second) on the concentrations of ascorbate (AsA) and nonprotein SH-compounds and the activities of superoxide dismutase (SOD; EC 1.15.11) and the H2O2 scavenging enzymes, AsA peroxidase (EC 1.11.1.7), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were studied in bean (Phaseolus vulgaris L.) leaves over a 13-day period. The concentrations of AsA and SH-compounds and the activities of SOD and H2O2 scavenging enzymes increased with light intensity, in particular in Mg-deficient leaves. Over the 12-day period of growth for a given light intensity, the concentrations of AsA and SH-compounds and the activities of these enzymes remained more or less constant in Mg-sufficient leaves. In contrast, in Mg-deficient leaves, a progressive increase was recorded, particularly in concentrations of AsA and activities of AsA peroxidase and glutathione reductase, whereas the activities of guaiacol peroxidase and catalase were only slightly enhanced. Partial shading of Mg-deficient leaf blades for 4 days prevented chlorosis, and the activities of the O2.− and H2O2 scavenging enzymes remained at a low level. The results demonstrate the role of both light intensity and Mg nutritional status on the regulation of O2.− and H2O2 scavenging enzymes in chloroplasts.  相似文献   

3.
The combined effects of drought and low light on biomass partition, foliar nitrogen concentration, membrane stability and active oxygen species (AOS) and antioxidant system were investigated in dragon spruce (Picea asperata Mast.) seedlings grown at two watering regimes (well-watered, 100% of field capacity and drought, 30% of field capacity) and light availabilities (HL, 100% of full sunlight and low light, 15% of full sunlight). Under high light condition drought not only reduced foliar nitrogen concentration (Nmass) and membrane stability index (MSI) but also significantly increased biomass partitioning to roots, AOS, ascorbic acid (AsA) content and antioxidant enzyme activities including superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase(GR, EC 1.6.4.2). However, no prominently drought-induced differences in biomass partitioning to root, SOD, GR activities, hydrogen peroxide (H2O2) and MSI were observed in low light seedlings. On the other hand, significant interaction of drought and low light was found on MSI, the antioxidant enzymes activities (SOD, POD, CAT, APX, GR), H2O2 and superoxide radical (O2 ). These results suggested that seedlings grown at the understory were more sensitive to drought than low light.  相似文献   

4.
Pea plants (Pisum sativum L.) were treated with 50???M aluminum chloride at pH 4.5 for 2 or 24?h at room temperature. Following treatment, root nodule Al uptake, the generation of reactive oxygen species (ROS, O 2 and H2O2), and the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) were investigated. Aluminum accumulation was found chiefly in the apoplast of the nodule cortex, endodermis and meristem, while the formation of peroxide was detected in the nodule cortex, infection threads and bacteroidal tissue. Further, there were increased levels of superoxide in the meristem and bacteroidal tissue. The activity of SOD (EC 1.15.1.1) and POX (EC 1.11.1.7) increased in the Al-treated nodules and the roots of pea plants, whereas CAT (EC 1.11.1.6) activity decreased. The Al absorbed by the nodules induced ROS production. The POX and SOD are important ROS-scavengers in Al-stressed nodules.  相似文献   

5.
The enzymatic antioxidant defences of mammalian cells include copper-zinc superoxide dismutase (SOD)(Cu Zn-SOD; EC 1.15.1.1) which catalyses the dismutation of superoxide anions (O2.-) to hydrogen peroxide(H2, O2)and a seleno-dependent glutathione peroxidase (GSH-px) (GSH-px; EC 1.11.1.9) which catalyses the degradation of H2O2 to H2O and O2. The measurement of these enzyme activities is often used as a possible biological index of oxidative stress in various clinical conditions. Complete understanding of such information requires knowledge of the random biological fluctuation of the enzyme activity which occurs in each individual. In the present investigation we examined this normal variability in 12 healthy volunteers (four women and eight men) aged 23–45 years, over 6 months. The intra-individual coefficients of variation (estimated using analysis of variance techniques) were 15% (SOD) and 13% (GSH-px). The analytical goal for imprecision was achieved for both enzymes, i.e. it was less than one half of the measured intra-individual variation. Both enzymes showed marked individuality, indicating that an individual's reference values are more useful than population-based data. The critical difference required for significant changes in serial results is 45% for SOD and 40% for GSH-px.  相似文献   

6.
Sharma P  Dubey RS 《Plant cell reports》2007,26(11):2027-2038
When seedlings of rice (Oryza sativa L.) cultivar Pant-12 were raised in sand cultures containing 80 and 160 μM Al3+ in the medium for 5–20 days, a regular increase in Al3+ uptake with a concomitant decrease in the length of roots as well as shoots was observed. Al3+ treatment of 160 μM resulted in increased generation of superoxide anion (O2 ) and hydrogen peroxide (H2O2), elevated amount of malondialdehyde, soluble protein and oxidized glutathione and decline in the concentrations of thiols (-SH) and ascorbic acid. Among antioxidative enzymes, activities of superoxide dismutase (SOD EC 1.15.1.1), guaiacol peroxidase (Guaiacol POX EC 1.11.1.7), ascorbate peroxidase (APX EC 1.11.1.11), monodehydroascorbate reductase (MDHAR EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1) and glutathione reductase (EC 1.6.4.2) increased significantly, whereas the activities of catalase (EC EC 1.11.1.6) and chloroplastic APX declined in 160 μM Al3+ stressed seedlings as compared to control seedlings. The results suggest that Al3+ toxicity is associated with induction of oxidative stress in rice plants and among antioxidative enzymes SOD, Guaiacol POX and cytosolic APX appear to serve as important components of an antioxidative defense mechanism under Al3+ toxicity. PAGE analysis confirmed the increased activity as well as appearance of new isoenzymes of APX in Al3+ stressed seedlings. Immunoblot analysis revealed that changes in the activities of APX are due to changes in the amounts of enzyme protein. Similar findings were obtained when the experiments were repeated using another popular rice cv. Malviya-36.  相似文献   

7.
Many helminths cause long-lasting infections, living for several years in mammalian hosts reflecting a well balanced coexistence between host and parasite. There are many possible explanations as to how they can survive for lengthy periods. One possibility is their antioxidant systems, which can serve as defence mechanisms against host-generated oxygen radicals. Therefore, the aim of this experimental study was to examine the antioxidant system in Hymenolepisdiminuta during short (1.5 months young tapeworms) and long (1.5 years old tapeworms) term infection in the rat small intestine.The strobilae of H. diminuta tapeworms (14 young and three old) were divided into three pieces: the anterior part, containing the genital primordiae in the immature segments; the medial part, containing the early uterus in the mature, hermaphroditic proglottids and the terminal part with the mature gravid uterus in the gravid segments. Supernatants of these fragments were used for determination of markers of oxidative stress: concentration of thiobarbiturate reactive substances (TBARS) and of reduced glutathione (GSH), and the activity of antioxidant enzymes: superoxide dismutase (SOD1 and SOD2), catalase (CAT), glutathione peroxidases (GSHPxs), glutathione transferase (GST) and glutathione reductase (GSHR).The results indicated changes in levels of oxidative stress markers and antioxidant enzyme activity in both the young and old forms of H. diminuta. Relatively high activity of SOD (particularly in the anterior part of young tapeworms) was observed, as was increased activity of total GSHPx and a relatively high concentration of GSH in all parts of the tapeworms. These are caused by exposure to increased amount of ROS, which are produced during the inflammatory state. Due to the high activity of antioxidant enzymes, the anterior section of young and old tapeworms is equipped with a very effective antioxidant system. Old organisms also effectively resist oxidative stress due to reduced levels of lipid peroxidation and the high activity of GST, all of which suggest good adaptation to the hostile environment in the host’s intestine.  相似文献   

8.
Seasonal changes in levels of reactive oxygen species (ROS), low-molecular weight antioxidants and activities of antioxidant enzymes were analyzed in relation to the freezing tolerance of 1-year-old needles from four populations of Norway spruce. Throughout the study period (from January until May), no significant changes were observed in the superoxide anion radical (O 2 ·? ) or hydrogen peroxide (H2O2) levels in the needles. By contrast, a marked reduction was observed in concentrations of low-molecular weight antioxidants, including flavonoids (FL), ascorbic acid (AsA) and slight glutathione (GSH), during deacclimation. The activities of superoxide dismutase (SOD) (EC. 1.15.1.1.) and guaiacol peroxidase (PO) (EC. 1.11.1.7.) also decreased significantly. The activity of catalase (CAT) (EC. 1.11.1.6.) did not change significantly. Levels of low-molecular weight antioxidants (AsA, FL and GSH) and SOD activity were correlated significantly with freezing tolerance in the studied populations. The reactions were similar in all populations. This suggests that the response of the antioxidant system depends more strongly on climatic conditions than on population origin. The ability of spruce trees to cope with active oxygen species is discussed as an aspect of defense and a factor associated with freezing tolerance.  相似文献   

9.
The changes in accumulation of two potential osmoprotectants (proline and glycine betaine), lipid peroxidation appraised as malondialdehyde (MDA) level, activities of key antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POD: EC 1.11.1.7), and glutathione reductase (GR: EC 1.6.4.2), and soluble protein profile in two cultivars of mulberry (S146 and Sujanpuri) differing in alkalinity (NaHCO3) tolerance were investigated at 2-month intervals up to 6-month growth under stress conditions. Varying levels of salinity–alkalinity developed in soil were 0, 30, 40, and 50 g of NaHCO3 kg?1 soil with pH 7.8, 9.1, 9.8, and 10.3, respectively. Alkali stress led to a consistent accumulation of proline and glycine betaine in mulberry leaves with time. The activities of leaf SOD, CAT, POD, and GR increased with increase in external salt concentration and pH. The increase in antioxidant enzyme activities was higher in cv. S146 than cv. Sujanpuri, whereas rate of lipid peroxidation measured in terms of MDA was higher in cv. Sujanpuri as compared to cv. S146. Protein profile revealed that some unknown proteins of low molecular mass (10–32.5 kDa) were induced by NaHCO3 stress, but differently in two cultivars.  相似文献   

10.
Leaves and nodules (bacteroids and cytosol) of alfalfa (Medicago sativa L. cv Aragon) plants inoculated with Rhizobium meliloti strain 102F51 have been analyzed for the presence of the enzymes superoxide dismutase (SOD, EC 1.15.1.1), catalase (EC 1.11.1.6), and peroxidase (EC 1.11.1.7). All three fractions investigated (leaves, bacteroids, and nodular cytosol) show Cu,Zn-SOD activity. Besides, the bacteroids and cytosol of nodules possess CN-insensitive SOD activities. Studies of SOD inactivation with H2O2 indicate that, very likely, a Mn-SOD is present in the bacteroids, and suggest that the cytosol contain both Mn-SOD and Fe-SOD. Bacteroids show high catalase activity but lack peroxidase. By contrast, the nodule cytosol exhibits an elevated peroxidase activity as compared with the foliar tissue; this activity was completely inhibited by 50 to 100 micromolar KCN. The significantly lower contents of H2O2 and malondialdehyde (a product of lipid peroxidation) in nodules with respect to those in leaves reveal that the above-mentioned bacteroid and cytosol enzymes act in an efficient and combined manner to preserve integrity of nodule cell membranes and to keep leghemoglobin active.  相似文献   

11.
The effects of Ca(NO3)2 stress on biomass production, oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants were investigated. Results showed that when exposed to 80 mM Ca(NO3)2 stress, the biomass production reduction in non-grafted plants was more significant than that of grafted plants. Under Ca(NO3)2 stress, superoxide anion radical (O2) producing rate, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents of non-grafted plants roots were significantly higher than those of grafted plants, however, nitrate (NO3 ), ammonium (NH4 +) and proline contents, superoxide dismutase (SOD, EC1.15.1.1), peroxidase (POD, EC1.11.1.7), catalase (CAT, EC1.11.1.6) and arginine decarboxylase (ADC, EC 4.1.1.19) activities of grafted plants roots were significantly higher than those of non-grafted plants. Regardless of stress, free, conjugated and bound polyamine contents in roots of grafted plants were significantly higher than those of non-grafted plants. The possible roles of antioxidant enzymes, prolines and polyamines in adaptive mechanism of tomato roots to Ca(NO3)2 stress were discussed. Gu-Wen Zhang and Zheng-Lu Liu contributed equally to this work.  相似文献   

12.
Chronic obstructive pulmonary disease (COPD) is a major cause of mortality that has been associated with inflammation and oxidative stress. The purpose of the present case–control study was to determine the relationships between oxidative stress-related genetic variants and the risk and severity of COPD, as well as, the influence of these variants on inflammatory and oxidative stress parameters. Genotyping of superoxide dismutase 1 (SOD1) + 35 A/C (rs2234694), catalase [A-21T (rs7943316), C-262T (rs1001179)] and glutathione peroxidase 1 (reduced glutathione (GSH)-Px1) 198Pro/Leu (rs1050450) was carried out in 143 patients with COPD and 216 healthy controls using PCR-RFLP. Serum levels of IL-6 and TNF-α were determined by enzyme-linked immunosorbent assays (ELISA), while the levels of reduced GSH, total antioxidant status (TAS), H2O2, lipid peroxides (TBARS) and protein carbonyls (PCs) were determined using spectrophotometric methods. We also evaluated the activities of GSH-Px, catalase, and superoxide dismutase (SOD) in both plasma and erythrocytes. We did not observe significant differences in the genotype and allele frequencies of chosen variants between COPD patients and healthy controls. A significant correlation was retrieved between the SOD1?+?35A/C variant and disease severity (odds ratios (OR) = 0.15, p?=?0.04). In addition, patients having the +35AC genotype presented increased plasma levels of GSH and a reduced level of PCs (p?=?0.03, p?=?0.04, respectively). The present data highlighted the important role of antioxidant enzymes and their genetic variants in the oxidative stress-mediated pathogenesis and progression of COPD.  相似文献   

13.
The aim of this study is to investigate the impacts of exogenous salicylic acid (SA) pretreatments on hydrogen peroxide (H2O2) accumulation, protein oxidation, and H2O2-scavenging enzymes in leaves of Cd-treated flax seedlings. Cd-enhanced H2O2 levels were related to increased activities of guaiacol peroxidase (POX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), and were independent of changes in catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC 1.15.1.1) activities. In control flax seedlings, exogenous SA pretreatments inhibited the activity of CAT, resulted in an enhanced production of H2O2 suggesting that SA requires H2O2 to initiate an oxidative stress. However, although leaves of Cd-free flax seedlings pretreated with SA accumulated in vivo H2O2 by 1.2-fold compared with leaves of Cd-only exposed ones; the damage to growth and proteins after the exposure to Cd was significantly less, indicating that SA can regulate the Cd-induced oxidative stress. Moreover, the Cd-treated seedlings primed with SA exhibited a higher level of total antioxidant capacities and increased activities of H2O2-detoxifying enzymes.  相似文献   

14.
BackgroundThe aim of this study was to determine the levels of lipid peroxidation (MDA) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the blood serum of patients with cirrhosis and liver transplantation.MethodsIn this study, serum malondialdehyde acid (MDA) levels, superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) activities were measured spectrophotometrically and compared to the results of the healthy control group.ResultsSOD, CAT and GSH activities were significantly decreased in the patient groups compared to the healthy control group (p<0.05). MDA levels were significantly higher in the patient group compared to the healthy control group (p <0.05).ConclusionsIn conclusion, this study demonstrated that oxidative stress may play an important role in the development of liver cirrhosis and in liver transplantation. This study is the first one to show how MDA, SOD, CAT and GSH levels change in liver cirrhosis and liver transplantation, while further studies are essential to investigate antioxidant enzymes and oxidative stress status in patients with cirrhosis and liver transplantation.  相似文献   

15.
Germination of lupine (Lupinus luteus L.) seeds was accompanied by an increase in concentration of free radicals with g 1 and g 2 values of 2.0056 ± 0.0003 and 2.0033 ± 0.0005, respectively. The highest intensity of free radical signal was observed in embryo axes immediately after radicle protruded through the seed coat. Hydrogen peroxide accumulated in embryonic axes and cotyledons during imbibition before the onset of germination in the seed population. The activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) rose progressively in embryo axes. In cotyledons SOD activity did not change significantly, while that of CAT increased during germination. The enhancement of Cu, Zn-SODs and Mn-SOD isoforms in embryonic axes was observed. A new isoform of catalase was synthesized, suggesting that it plays a relevant role during germination. SOD and CAT activities were detected in dry seeds. Free radical generation and response of antioxidative enzymes differed between embryo axes and cotyledons during the germination timecourse.  相似文献   

16.
Parsley (Petroselinum hortense L.) plants cultivated under controlled conditions were exposed to different doses of cadmium to investigate the antioxidant capacity and cadmium accumulation in the samples. Two-months-old parsley seedlings were treated with four different concentrations of CdCl2 (0, 75, 150, and 300 μM) for fifteen days. Cadmium level in leaves increased significantly by increasing the Cd contamination in the soil. Total chlorophyll and carotenoid content declined considerably with Cd concentration. Cd treatment caused a significant increase lipid peroxidation in tissue of leaf. Superoxide dismutase activity (SOD, EC 1.15.1.1) increased partially at 75 and 150 μM CdCl2 concentrations whereas the activity decreased at 300 μM CdCl2. Catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) activities were reduced by Cd application. Total phenolic compound amount increased significantly with increasing Cd concentration, as ferric reduction power, superoxide anion radical, and DPPH˙ free radical scavenging activities elevated slightly by the concentration. These results suggest that antioxidant enzymes activities were repressed depending on accumulation of cadmium in leaves of parsley while the non-enzymatic antioxidant activities slightly increased.  相似文献   

17.
Strain differences of mice in their susceptibility to nitrogen dioxide (NO2) were examined by measuring the activities of antioxidative protective enzymes, and the amounts of antioxidants and lipid peroxides in lungs. Four strains of mice: ICR, BALB/c, ddy and C57BL/6 were used in this study and their LC50 values after exposure to NO2 for 16 hr were: 38, 49, 51 and 64 ppm, respectively (1).Genetic strain differences were observed in the enzyme activities, the antioxidant contents and lipid peroxide contents among these four different strains. The activities of glutathione peroxidase (GPx), glutathione S-transferase, and superoxide dismutase (SOD), and the contents of non-protein sulfhydryls (NPSH), α-tocopherol (α-Toc) and total lipids in lungs of the four strains were related to their LC50, while TBA reactants in lungs of the four strains were inversely related to their LC50.After exposure to 20 ppm NO2 for 16 hr, the activities of the protective enzymes and the contents of NPSH decreased, while the level of α-Toc increased markedly. The activities of GPx, 6-phosphogluconate dehydrogenase, SOD and disulfide reductase, and the contents of NPSH, α-Toc and total lipids were also related to their LC50. On the other hand, TBA reactants increased higher than those of the control groups and were inversely related to their LC50.These results suggest that the protective enzymes and the antioxidants are important factors as defence mechanism in lungs to NO2 and that the intensity of the protective systems in pigmented strains is generally greater than that in albino strains.  相似文献   

18.
The effects of UV-B radiation and/or deprivation of nitrogen stresses on growth rate, some antioxidant compounds, and activities of some antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), ascorbate peroxidase (APx; EC1.11.1.11), guaiacol peroxidase (GUPx; EC1.11.1.7) and glutathione reductase (GR, EC 1.6.4.2), as well as the levels of total glutathione pool, UV-B absorbing pigments, malondialdehyde (MDA) and H2O2 concentrations were studied in Spirulina platensis and Dunaliella salina. Less damage was observed in response to the combined UV-B and nitrogen deprivation as shown by growth rate and photosynthetic pigments especially in Dunaliella salina. A significant increase in flavonoids and phenolics under dual stress was observed. Conversely, a great reduction in malondialdehyde (MDA) and H2O2 concentrations were recorded under the combined stress compared to the effect of each stress. Furthermore, a significant increase in GSH/GSSG ratio toward the control was recorded in response to combined stresses, whereas a significant reduction in this ratio was observed in both microalgae in response to each stress. Increased activities of antioxidant enzymes were recorded under UV-B and nitrogen deprivation stresses.  相似文献   

19.
Oxidative stress is one aspect of metal toxicity. Zinc, although unable to perform univalent oxido‐reduction reactions, can induce the oxidative damage of cellular components and alter antioxidative systems. Verbascum thapsus L. plants that were grown hydroponically were exposed to 1 and 5 mM Zn2+. Reactive oxygen species (ROS) accumulation was demonstrated by the fluorescent probe H2DCFDA and EPR measurements. The extent of zinc‐induced oxidative damage was assessed by measuring the level of protein carbonylation. Activities and isoform profiles of some antioxidant enzymes and the changes in ascorbate and total phenolic contents of leaves and roots were determined. Stunted growth because of zinc accumulation, preferentially in the roots, was accompanied by H2O2 production in the leaf and root apoplasts. Increased EPR signals of the endogenous oxidant quinhydrone, ?CH3 and ?OH, were found in the cell walls of zinc‐treated plants. The activities of the antioxidative enzymes ascorbate peroxidase (APX) (EC 1.11.1.11), soluble superoxide dismutase (SOD) (EC 1.15.1.1), peroxidase (POD), (EC 1.11.1.7) and monodehydroascorbate reductase (EC 1.6.5.4) were increased; those of glutathione reductase (EC 1.6.4.2), dehydroascorbate reductase (EC 1.8.5.1) and ascorbate oxidase (AAO) (EC 1.10.3.3) were decreased with zinc treatment. Zinc induced a cell‐wall‐bound SOD isoform in both organs. Leaves accumulated more ascorbate and phenolics in comparison to roots. We propose a mechanism for zinc‐promoted oxidative stress in V. thapsus L. through the generation of charge transfer complexes and quinhydrone because of phenoxyl radical stabilisation by Zn2+ in the cell wall. Our results suggest that the SOD and APX responses are mediated by ROS accumulation in the apoplast. The importance of the POD/Phe/AA (ascorbic acid) scavenging system in the apoplast is also discussed.  相似文献   

20.
Seasonal changes in antioxidant enzyme activities (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.16; glutathione peroxidase, GPx, EC 1.11.1.9; glutathione reductase, GR, EC 1.6.4.2; glucose-6-phosphate dehydrogenase, G6PD, EC 1.1.1.49 and glutathione S -transferase, GST, EC 1.5.1.18) and lipid peroxidation (LPO) levels of livers and gills of female Caspian trout Salmo trutta caspius , Black Sea trout Salmo trutta labrax and mountain trout Salmo trutta macrostigma were investigated. SOD, CAT, GPx, G6PD and GST activities were higher in liver compared to gills of all sub-species; concomitantly, the GR activity was also higher in the livers of S. t. caspius and S. t. labrax , but the reverse was seen in S. t. macrostigma . LPO levels were higher in the gills compared to the liver of all sub-species. There was no general trend in the seasonal changes in the gill antioxidant enzyme (AE) activities or LPO levels. Higher AE activities, however, were found in the liver of each sub-species during autumn, and this coincided with an increase in the gonado-somatic index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号