首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The nucleotide sequence of the Bacillus stearothermophilus alpha-amylase gene and its flanking regions was determined. An open reading frame was found, comprising a total of 1,647 base pairs (549 amino acids) and starting from a GUG codon as methionine. It was shown by NH2-terminal amino acid sequence analysis that the extracellular amylase consisted of 515 amino acid residues, which corresponded to a molecular weight of 58,779. Thus the NH2-terminal portion of the gene encodes 34 amino acid residues as a signal peptide. The amino acid sequence deduced from the alpha-amylase gene was fairly homologous (61%) with that of another thermostable amylase from Bacillus amyloliquefaciens.  相似文献   

2.
The Bacillus polymyxa amylase gene comprises 3,588 nucleotides. The mature amylase comprises 1,161 amino acids with a molecular weight of 127,314. The gene appeared to be divided into two portions by the direct-repeat sequence located at almost the middle of the gene. The 5' region upstream of the direct-repeat sequence was shown to be responsible for the synthesis of beta-amylase. The 3' region downstream of the direct-repeat sequence contained four sequences homologous with those in other alpha-amylases, such as Taka-amylase A. The 48-kilodalton (kDa) amylase isolated from B. polymyxa was proven to have alpha-amylase activity. The amino acid sequences of the peptides generated from the 48-kDa amylase showed complete agreement with the predicted amino acid sequence of the C-terminal portion. The B. polymyxa amylase gene was therefore concluded to contain in-phase beta- and alpha-amylase-coding sequences in the 5' and 3' regions, respectively. A precursor protein, a 130-kDa amylase, directed by a plasmid, pYN520, carrying the entire amylase gene, had both beta- and alpha-amylase activities. This represents the first report of a single protein precursor in procaryotes that gives rise to two enzymes.  相似文献   

3.
The ruminal bacterium Streptococcus bovis has been demonstrated to produce an extracellular amylase activity. We previously reported on the cloning of a gene from S. bovis encoding for what was initially believed to be the extracellular amylase. DNA sequence analyses indicated that the amylase produced by the cloned gene did not match the N-terminus amino acid sequence of the purified extracellular amylase and contained no apparent leader sequence for secretion. Analyses of crude extracts demonstrated the presence of an intracellular amylase in S. bovis JB1 that differed in molecular weight (56,000) from that of the extracellular amylase (70,000). The 56,000 molecular weight amylase was identical to the amylase produced by Escherichia coli containing the cloned amylase gene. Low levels of intracellular amylase activity were also detected in other strains of S. bovis and also Streptococcus salivarius. Introduction of the plasmid pVA838 containing the cloned amylase gene into S. bovis and S. sanguis resulted in enhanced intracellular amylase production by both organisms. The amylase gene has been sequenced, and analysis of the deduced amino acid sequence for the amylase indicates a high degree of similarity with secreted amylases from Bacillus species.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

4.
The gene coding for the heat-stable and pH-stable alpha-amylase of Bacillus licheniformis 584 (ATCC 27811) was cloned in Escherichia coli and the nucleotide sequence of a DNA fragment of 1,948 base pairs containing the entire amylase gene was determined. As inferred from the DNA sequence, the B. licheniformis alpha-amylase had a signal peptide of 29 amino acid residues and the mature enzyme comprised 483 amino acid residues, giving a molecular weight of 55,200. The amino acid sequence of B. licheniformis alpha-amylase showed 65.4% and 80.3% homology with those of heat-stable Bacillus stearothermophilus alpha-amylase and relatively heat-unstable Bacillus amyloliquefaciens alpha-amylase, respectively. Nevertheless, several regions of the alpha-amylases appeared to be clearly distinct from one another when their hydropathy profiles were compared.  相似文献   

5.
The binding of salivary amylase to Streptococcus gordonii has previously been shown to involve a 20-kDa amylase-binding protein (AbpA). S. gordonii also releases an 82-kDa protein into the supernatant that binds amylase. To study this 82-kDa component, proteins were precipitated from bacterial culture supernatants by the addition of acetone or purified amylase. Precipitated proteins were separated by SDS-PAGE and transferred to a sequencing membrane. The P2 kDa band was then sequenced, yielding a 25 N-terminal amino acid sequence, CGFIFGRQLTADGSTMFGPTEDYP. Primers derived from this sequence were used in an inverse PCR strategy to clone the full-length gene from S. gordonii chromosomal DNA. An open reading frame of 1959 bp was noted that encoded a 652 amino acid protein having a predicted molecular mass of 80 kDa. The first 24 amino acid residues were consistent with a hydrophobic signal peptide, followed by a 25 amino acid N-terminal sequence that shared identity (24 of 25 residues) with the amino acid sequence of purified AbpB. The abpB gene from strains of S. gordonii was interrupted by allelic exchange with a 420-bp fragment of the abpB gene linked to an erythromycin cassette. The 82-kDa protein was not detected in supernatants from these mutants. These abpB mutants retained the ability to bind soluble amylase. Thus, AbpA, but not AbpB, appears sufficient to be the major receptor for amylase binding to the streptococcal surface. The role of AbpB in bacterial colonization remains to be elucidated.  相似文献   

6.
Summary We constructed a cDNA library for the beetle,Tribolium castaneum. This library was screened using a cloned amylase gene fromDrosophila melanogaster as a molecular probe. Beetle amylase cDNA clones were isolated from this bank, and the nucleotide sequence was obtained for a cDNA clone with a coding capacity for 228 amino acids. Both the nucleotide sequence and predicted amino acid sequence were compared to our recent results forD. melanogaster alpha-amylases, along with published sequences for other alpha-amylases. The results show that animal alpha-amylases are highly conserved over their entire length. A borader comparison, which includes plant and microbial alpha-amylase sequences, indicates that parts of the gene are conserved between prokaryotes, plants, and animals. We discuss the potential importance of this and other enzyme-coding genes for the construction of molecular phylogenies and for the study of the general question of molecular clocks in evolution.  相似文献   

7.
A novel type of human alpha-amylase produced in lung carcinoid tumor   总被引:2,自引:0,他引:2  
A novel type of alpha-amylase was detected in a lung carcinoid tissue after surveying the cDNA library constructed from this tumor mRNA. Nucleotide sequence analysis showed that the amylase expressed in this carcinoid tumor has 13 and 6 amino acid substitutions when compared with salivary amylase (Amy1) and pancreatic amylase (Amy2), respectively. The nucleotide sequence homologies of cDNAs between this carcinoid amylase and amy1, amy2 are 97.5% and 98.2%, respectively. The nucleotide sequence comparison strongly suggests that this new amylase is the product of the amy3 gene that has been detected in human genome [Emi et al., Gene 62 (1988) 229-235]  相似文献   

8.
9.
Brachybacterium sp. strain LB25 produces a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents. The enzyme hydrolyzed starch to produce maltotriose primarily. The structural gene encoding the amylase from strain LB25 was cloned and sequenced. The amino acid sequence of the product showed significant similarity (45 to 49%) to amylases from the genus Streptomyces. The amylase gene was expressed in Escherichia coli, but the specific activity of the recombinant amylase was lower than that of the amylase purified from strain LB25.  相似文献   

10.
The nucleotide sequence of the Pseudomonas saccharophila gene encoding maltotetraohydrolase (G4-forming amylase) has been determined. The coding region for the G4-forming amylase precursor contained 1653 nucleotides. The deduced precursor protein included an N-terminal 21-residue putative signal peptide; the deduced mature form of G4-forming amylase contains 530 amino acid residues with a calculated molecular mass of 57 740 Da. Sequence similarities between the G4-forming amylase and other amylolytic enzymes of species ranging from prokaryotes to eukaryotes are quite limited. However, three regions, which are involved in both the catalytic and substrate-binding sites of various amylolytic enzymes, are highly conserved in the G4-forming amylase of P. saccharophila.  相似文献   

11.
The structural gene for excreted amylase from Aeromonas hydrophila JMP636 has been cloned within a 2.1-kilobase SmaI fragment of DNA. The amylase gene is transcribed from its own promoter in Escherichia coli, producing a gene product of Mr 49,000. The amylase gene product is secreted to the periplasm of E. coli; however, it is not excreted. Nucleotide sequencing revealed an open reading frame of 1,392 base pairs corresponding to a protein of 464 amino acid residues. A potential signal peptide of 21 amino acid residues is present at the NH2 terminal of the predicted protein. Three regions of homology with other procaryotic and eucaryotic alpha-amylases were detected within the predicted amino acid sequence.  相似文献   

12.
芽孢杆菌α-淀粉酶基因的克隆、表达和酶学性质分析   总被引:1,自引:0,他引:1  
在仔猪结肠内容物中分离出一株能利用淀粉的芽孢杆菌Bacillussp.WS06,构建了全基因组DNA文库,从中筛选出α_淀粉酶基因amyF,分析测定了其核苷酸序列并进行了表达;其中amyF编码的蛋白有526个氨基酸、分子量为58.6kD;它与已报道的Bacillusmegaterium的α_淀粉酶序列有93%的同源性。经过氨基酸序列比较分析还发现,AmyF含有淀粉酶家族中4个高度保守的酶催化活性区。经多步纯化,重组酶的比活共提高了22.2倍,获得凝胶电泳均一的蛋白样品;经SDS_PAGE检测,AmyF酶分子量为57kD。该酶的最适反应温度为55℃~60℃,酶的最适反应pH为7.0,在温度不超过55℃时,酶活较稳定;AmyF能迅速降解淀粉生成麦芽寡糖,属于内切糖苷酶。  相似文献   

13.
An alpha-amylase gene from Bacillus sp. strain TS-23 was cloned and expressed by using its own promoter on the recombinant plasmid pTS917 in Escherichia coli. A cell fractionation experiment revealed that approximately 60% of the amylase activity was in the periplasmic space. Analysis and activity staining of the concentrated supernatant fraction by SDS-polyacrylamide gel electrophoresis showed an apparent protein band with a mol. wt of approximately 65,000. The amylase gene (amyA) consisted of an open reading frame of 1,845 bp encoding a protein of 613 amino acids with a calculated mol. wt of 69,543. The predicted amino acid sequence showed high homology with Bacillus species, E. coli and Salmonella typhimurium alpha-amylases. Deletion of 96 amino acids from the C-terminal portion of the amylase did not result in the loss of amylolytic activity. The truncated amylase, deletion of the first 50 amino acids from the N-terminus, was overexpressed in E. coli system and refolded to yield an activable enzyme.  相似文献   

14.
A gene encoding maltogenic amylase from acidic Bacillus sp. US149 (maUS149) was cloned, sequenced and over-expressed in Escherichia coli. The nucleotide sequence analysis revealed an open reading frame (ORF) of 1749 bp encoding a protein of 582 residues. The alignment of deduced amino acid sequence revealed a relatively low homology with the already reported maltogenic amylases. In fact, its highest identity, of only 60%, was found with the maltogenic amylase of Thermus sp. IM6501. The recombinant enzyme (MAUS149) was found to be intracellular and was purified to homogeneity from the cell crude extract with a yield of 23%. According to PAGE analysis, under reducing and non-reducing conditions, the recombinant enzyme has an apparent molecular weight of 135 kDa and is composed of two identical subunits of 67.5 kDa each. The maximum activity was obtained at 40°C and pH 6.5. MAUS149 could be classified as a maltogenic amylase since it produces mainly maltose from starch, maltose and glucose from β-cyclodextrin, and panose from pullulan.  相似文献   

15.
Brachybacterium sp. strain LB25 produces a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents. The enzyme hydrolyzed starch to produce maltotriose primarily. The structural gene encoding the amylase from strain LB25 was cloned and sequenced. The amino acid sequence of the product showed significant similarity (45 to 49%) to amylases from the genus Streptomyces. The amylase gene was expressed in Escherichia coli, but the specific activity of the recombinant amylase was lower than that of the amylase purified from strain LB25.  相似文献   

16.
The gene (tfa), encoding a maltotriose-producing α-amylase from Thermobifida fusca NTU22, was cloned, sequenced and expressed in Escherichia coli. The gene consists of 1,815 base pairs and encodes a protein of 605 amino acids. The base composition of the tfa coding sequence is 69% G+C and the protein has a predicted pI value of 5.5. The deduced amino acid sequence of the tfa amylase exhibited a high degree of similarity with amylases from Thermomonospora curvata and Streptomyces amylases. The purified amylase could be detected as a single band of about 65 kDa by SDS-polyacrylamide gel electrophoresis and this agrees with the predicted size based on the nucleotide sequence. The optimal pH and temperature of the purified amylase were 7.0 and 60°C, respectively. The properties of purified amylase from the E. coli transformant are similar to that of an amylase purified from the original T. fusca NTU22.  相似文献   

17.
Bifidobacterium adolescentis Int-57 (INT57), isolated from human feces, secretes an amylase. We have shot-gun cloned, sequence analyzed and expressed the gene encoding this amylase in B. longum. The sequenced 2477 bp fragment was homologous to other extracellular amylases. The encoded protein was predicted to be composed of 595 amino acids with a molecular weight of 64 kDa, and was designated AmyB. Highly conserved amylase domains were found in AmyB. The signal sequence and cleavage site was predicted by sequence analysis. AmyB was subcloned into pBES2, a novel E. coliBifidobacterium shuttle vector, to construct pYBamy59. Subsequently, B. longum, with no apparent amylase activity, was transformed with pYBamy59. More than 90% of the amylase activity was detected in the culture broth. This approach may open the way for the development of more efficient expression and secretion systems for Bifidobacterium. Both authors contributed equally Received 17 June 2005; Revisions requested 13 July 2005 and 26 September 2005; Revisions received 12 September 2005 and 8 November 2005; Accepted 11 November 2005  相似文献   

18.
The nucleotide sequence of the gene for maltohexaose-producing amylase from an alkalophilic Bacillus sp. #707 was determined. Starting at an ATG initiation codon, an open reading frame was composed of 1554 bp (518 amino acids). The NH2-terminal portion encoded a 33 amino acid-long signal peptide. The deduced amino acid sequence of the extracellular mature enzyme was more than 60% homologous to those of the liquefying type alpha-amylases but not to those of the saccharifying type alpha-amylases. The sequence of its signal peptide was completely different from those of other alpha-amylases.  相似文献   

19.
A highly heat-stable amylase gene from an obligately anaerobic and extremely thermophilic bacterium, Dictyoglomus thermophilum, was cloned and expressed in Escherichia coli. The nucleotide sequence of the amylase gene predicts a 686-amino-acid protein of relative molecular mass 81,200, which is consistent with that determined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the purified enzyme. The NH2-terminal sequence determined using the enzyme purified from E. coli cells corresponds precisely to that predicted from the nucleotide sequence, except for the absence of the NH2-terminal methionine in the mature protein. When the amylase gene was expressed in E. coli cells, the enzyme was localized in the cytoplasmic fraction; this is probably explained by the absence of the signal sequence for secretion. By using the amylase purified from the E. coli transformant, some enzymatic properties, such as optimum pH, optimum temperature, pH-stability and heat-stability, were examined. The amylase was found to be a highly liquefying-type.  相似文献   

20.
The gene (amyP) coding for maltotetraose-forming amylase (exo-maltotetraohydrolase) of Pseudomonas stutzeri MO-19 was cloned. Its nucleotide sequence contained an open reading frame coding for a precursor (547 amino acid residues) of secreted amylase. The precursor had a signal peptide of 21 amino acid residues at its amino terminus. An extract of Escherichia coli carrying the cloned amyP had amylolytic activity with the same mode of action as the extracellular exo-maltotetraohydrolase obtained from P. stutzeri MO-19. A region in the primary structure of this amylase showed homology with those of other amylases of both procaryotic and eucaryotic origins. The minimum 5' noncoding region necessary for the expression of amyP in E. coli was determined, and the sequence of this region was compared with those of Pseudomonas promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号