首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new benzenesulfonamides, most of which are chiral, incorporating 1, 3, 4-oxadiazole and amino acid moieties have been synthesized. Some of these compounds were screened for antimalarial activity and also evaluated for their ability to inhibit hem polymerization. The electrophoretic analysis indicated that one compound was effective in inhibiting the degradation of hemoglobin. The synthesized compounds were tested in mice infected with Plasmodium berghei. These derivatives have the potential for the development of novel antimalarial lead compounds.  相似文献   

2.
A novel series of 6-(2-chloroquinolin-3-yl)-4-substituted-phenyl-6H-1,3-oxazin-2-amines were synthesized and evaluated for in vitro antimalarial efficacy against chloroquine sensitive (MRC-02) as well as chloroquine resistant (RKL9) strains of Plasmodium falciparum. The activity tested was at nanomolar concentration. β-Hematin formation inhibition activity (BHIA50) of oxazines were determined and correlated with antimalarial activity. A reasonably good correlation (r?=?0.49 and 0.51, respectively) was observed between antimalarial activity (IC50) and BHIA50. This suggests that antimalarial mode of action of these compounds seems to be similar to that of chloroquine and involves the inhibition of hemozoin formation. Some of the compounds were showing better antimalarial activity than chloroquine against resistant strain of P. falciparum and were also found to be active in the in vivo experiment.  相似文献   

3.
Symmetrically and asymmetrically substituted 1,2,4,5-tetraoxanes were synthesized by the oxidative system H(2)O(2)/TFE in presence of MeReO(3) as a catalyst. All of the synthesized compounds were characterized spectroscopically, and evaluated for cytotoxicity, and antimalarial activity. Several of these tetraoxanes exhibited in vitro antimalarial activity without showing any cytotoxicity. Thermal stability of these compounds was studied by differential scanning calorimetry.  相似文献   

4.
A series of 15-membered azalide urea and thiourea derivatives has been synthesized and evaluated for their in vitro antimalarial activity against chloroquine-sensitive (D6), chloroquine/pyremethamine resistant (W2) and multidrug resistant (TM91C235) strains of Plasmodium falciparum. We have developed an effective automated synthetic strategy for the rapid synthesis of urea/thiourea libraries of a macrolide scaffold. Compounds have been synthesized using a solution phase strategy with overall yields of 50-80%. Most of the synthesized compounds had inhibitory effects. The top 10 compounds were 30-65 times more potent than azithromycin, an azalide with antimalarial activity, against all three strains.  相似文献   

5.
A library of 30 trisubstituted pyrimidines were synthesized and evaluated for their in vitro antimalarial and antitubercular activity. Out of the 30 compounds synthesized, 23 compounds have shown in vitro antimalarial activity against Plasmodium falciparum in the range of 0.25-2 microg/mL and 16 compounds have shown antitubercular activity against Mycobacterium tuberculosis H37Ra, at a concentration of 25 microg/mL.  相似文献   

6.
A series of mono- and di-substituted analogues of isocryptolepine have been synthesized and evaluated for in vitro antimalarial activity against chloroquine sensitive (3D7) and resistant (W2mef) Plasmodium falciparum and for cytotoxicity (3T3 cells). Di-halogenated compounds were the most potent derivatives and 8-bromo-2-chloroisocryptolepine displayed the highest selectivity index (106; the ratio of cytotoxicity (IC(50)=9005 nM) to antimalarial activity (IC(50)=85 nM)). Our evaluation of novel isocryptolepine compounds has demonstrated that di-halogenated derivatives are promising antimalarial lead compounds.  相似文献   

7.
A small library of 20 trisubstituted pyrimidines were synthesized and evaluated for their in vitro antimalarial and antitubercular activities. Out of the total screened compounds, 16 compounds have shown in vitro antimalarial activity against Plasmodium falciparum in the range of 0.25-2microg/mL and 8 compounds have shown antitubercular activity against Mycobacterium tuberculosis H(37)Ra, at a concentration of 12.5microg/mL.  相似文献   

8.
Some novel derivatives of Bis-chalcone were synthesized and characterized by their physical and spectral data. All the synthesized compounds were subsequently screened for in vitro globin hydrolysis, β-hematin formation, and murine Plasmodium berghei, using chloroquine as the reference drug. Most of the synthesized compounds exhibited mild to moderate susceptibilities toward the parasite in comparison with the standard. The most active antimalarial compound was 1,1-Bis-[(3′,4′-N-(urenylphenyl)-3-(3″,4″,5″-trimethoxyphenyl)]-2-propen-1-one 5, with a percentage of inhibition of heme polymerization of 87.05?±?0.77, and this compound increased the survival time after infection, reduce the parasitemia and delay the progression of malaria.  相似文献   

9.
A series of novel aza vinyl sulfones were designed, synthesized in good yields and evaluated as antiplasmodial agents. Tested compounds did not show activity against papain or the Plasmodium falciparum cysteine protease falcipain-2. However, a number of the new compounds effectively inhibited the in vitro development of P. falciparum. Compounds containing a squaramide group were the most active, with IC50 values between 0.95 and 4.5 μM, suggesting that these are potential lead compounds for the development of new antimalarial agents.  相似文献   

10.
In the present communication, newly synthesized 8-quinolinamines (25-27) related to previously reported 2-tert-butylprimaquine (2) were evaluated for their in vitro antimalarial activity against chloroquine sensitive and resistant Plasmodium falciparum strains, in vivo antimalarial activity against P. berghei infected mice, in vitro antileishmanial activity against Leishmania donovani, in vitro antimicrobial activity against various fungi and bacteria, and cytotoxicity in a panel of mammalian cell lines. No promising cytotoxicities were observed for compounds reported herein. Analogue 25 was found to exhibit curative antimalarial activity at a dose of 25 mg/kg/dayx4 in a P. berghei infected mice model, and produced suppressive activity at a lower dose of 10 mg/kg/dayx4. In vitro antileishmanial activities (IC50 and IC90) comparable to standard drug pentamidine were exhibited by all synthesized 8-quinolinamines 25-27. At the same time, promising antibacterial and antifungal activities were also observed for synthesized compounds against a panel consisting of several bacteria and fungi.  相似文献   

11.
Guanylthiourea (GTU) has been identified as an important antifolate antimalarial pharmacophore unit, whereas, 4-amino quinolones are already known for antimalarial activity. In the present work molecules carrying 4-aminoquinoline and GTU moiety have been designed using molecular docking analysis with PfDHFR enzyme and heme unit. The docking results indicated that the necessary interactions (Asp54 and Ile14) and docking score (−9.63 to −7.36 kcal/mmol) were comparable to WR99210 (−9.89 kcal/mol). From these results nine molecules were selected for synthesis. In vitro analysis of these synthesized compounds reveal that out of the nine molecules, eight show antimalarial activity in the range of 0.61–7.55 μM for PfD6 strain and 0.43–8.04 μM for PfW2 strain. Further, molecular dynamics simulations were performed on the most active molecule to establish comparative binding interactions of these compounds and reference ligand with Plasmodium falciparum dihydrofolate reductase (PfDHFR).  相似文献   

12.
In the present work, a library of 120 compounds was prepared using various aliphatic and aromatic amines. Finally, 10 compounds were selected through in silico screening carrying 4-aminobenzoyl-l -glutamic acid and 1,3,5-triazine moiety. The docking results of compounds 4d16 and 4d38 revealed higher binding interaction with amino acids Asp54 (−537.96 kcal/mol) and Asp54, Phe116 (−618.22 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR inhibitors and were comparable to standard WR99210. These compounds were developed by facile and microwave-assisted synthesis via nucleophilic substitution reaction and characterized by different spectroscopic methods. In vitro antimalarial assay results also suggested that these two compounds were having higher antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strain out of the ten synthesized compounds with IC50 13.25 μM and 14.72 μM, respectively. These hybrid scaffolds might be useful in the lead discovery of a new class of Pf-DHFR inhibitors.  相似文献   

13.
A new series of peptidomimetic N‐substituted Cbz‐4‐Hyp‐Hpa‐amides were designed, synthesized, and evaluated for inhibition of the Plasmodium falciparum. Substituents on the N‐atom of the amide group were selected alkyl‐, allyl‐, aryl‐, 2‐hydroxyethyl‐, 2‐cyanoethyl‐, cyanomethyl‐, 2‐hydroxyethyl‐, 2,2‐diethoxyethyl‐, or 2‐ethoxy‐2‐oxoethylamino groups, and about of 40 new compounds were synthesized and evaluated for antiplasmodial activity in vitro. Antimalarial activity has been investigated as for the final peptide mimetics, and their immediate predecessors, carrying TBDMS or TBDPS protecting groups on 4‐hydroxyproline residue and 18 derivatives exhibited toxicity against Pfalciparum. Of these agents, compound 23e was shown to have potent antimalarial activity with IC50 528 ng/ml.  相似文献   

14.
Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC50 in the μM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure–activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.  相似文献   

15.
A series of substituted indole derivatives were synthesized and evaluated for their in vitro antimalarial activity against P. falciparum. Out of the 24 compounds synthesized six compounds have shown MIC of 1 microg/mL. These compounds are in vitro several folds more active than pyrimethamine.  相似文献   

16.
A series of 2,4,6-trisubstituted-pyrimidines were synthesized and evaluated for their in vitro antimalarial activity against Plasmodium falciparum. Of the 18 compounds synthesized, 14 compounds have shown MIC in the range of 0.25-2 microg/mL. These compounds are in vitro severalfold more active than pyrimethamine.  相似文献   

17.
Herein, we report synthesis, characterization, antimicrobial and antimalarial activities of azines Schiff base ligands (L1−L4) and their palladium (II) complexes ( C1−C4 ) of [Pd(L)(OAc)2] type. The azine ligands (L1−L4) were prepared by condensation of carbonyl compounds with hydrazine hydrate and their complexes by the reaction of palladium acetate with L1−L4 ligands in 1 : 1 molar ratio. The prepared ligands and their complexes were characterized by spectral characterization using 1H &13C-NMR, FT-IR and mass spectral studies, which revealed that the ligands coordinates via azomethine nitrogen and heteroatom or aryl carbon with palladium. Moreover, Schiff bases and their palladium (II) complexes have been screened for their antibacterial (S. aureus, B. subtillis, and S. typhi, P. aeruginosa), antifungal (C. albicans, A. niger, and A. clavatus) and antimalarial (P. falciparum) activities. The Schiff base L4 showed good results for antibacterial against S. aureus (MIC, 50 μg/mL) and antimalarial against P. falciparum (IC50, 0.83 μg/mL). The complex C1 showed best antibacterial activity (MIC, 62.5 μg/mL) against S. typhi and the complex C4 exhibited remarkable antimalarial activity (IC50, 0.42 μg/mL) among the tested compounds. Thus, azines based ligands and their Pd complexes can be good antimicrobial and antimalarial agents if explored further.  相似文献   

18.
Primaquine is the drug of choice for the radical cure of Plasmodium vivax malaria, but possesses serious side effects. In this study novel primaquine analogues were designed and synthesized. Lower toxicity was achieved by reducing or eliminating the tendency of forming chemically reactive and toxic intermediates and metabolites. In vitro and in vivo studies found that synthesized compounds were less toxic than the parent compound primaquine, while preserving the desired antimalarial activity. Some of these compounds possess a therapeutic index over 10 times superior to that of the commonly used antimalarial drug chloroquine. These compounds, as well as the underlying design rationale, may find usefulness in the discovery and development of new antimalarial drugs.  相似文献   

19.
A novel series of 6-(2-chloroquinolin-3-yl)-4-substituted-phenyl-6H-1,3-oxazin-2-amines were synthesized and evaluated for in vitro antimalarial efficacy against chloroquine sensitive (MRC-02) as well as chloroquine resistant (RKL9) strains of Plasmodium falciparum. The activity tested was at nanomolar concentration. β-Hematin formation inhibition activity (BHIA(50)) of oxazines were determined and correlated with antimalarial activity. A reasonably good correlation (r?=?0.49 and 0.51, respectively) was observed between antimalarial activity (IC(50)) and BHIA(50). This suggests that antimalarial mode of action of these compounds seems to be similar to that of chloroquine and involves the inhibition of hemozoin formation. Some of the compounds were showing better antimalarial activity than chloroquine against resistant strain of P. falciparum and were also found to be active in the in vivo experiment.  相似文献   

20.
The design, synthesis, and antimalarial activity of chimeras of thiosemicarbazones (TSC) and ferroquine (FQ) is reported. Key structural elements derived from FQ were coupled to fragments capable of coordinating metal ions. Biological evaluation was conducted against four strains of the malaria parasite Plasmodium falciparum and against the parasitic cysteine protease falcipain-2. To establish the role of the ferrocenyl moiety in the antiplasmodial activity of this series, purely organic parent compounds were also synthesized and tested. The presence of the aminoquinoline structure, allowing transport of the compounds to the food vacuole of the parasite, seems to be the major contributor to antimalarial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号