首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholinesterases are divided into two classes based on differences in their substrate specificity and tissue distribution: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). These enzymes may be inhibited by several compounds, such as antidepressants. The antidepressants paroxetine, imipramine, clomipramine and sertraline inhibited both venom AChE as well as human serum BChE in a concentration-dependent manner but had no effect on AChE in the rat brain striatum. The IC(50) of venom calculated for imipramine was 0.3 mM, paroxetine 0.38 mM, clomipramine 0.34 mM and sertraline 0.35 mM. Analysis of kinetic data indicated that the inhibition caused by sertraline and paroxetine was mixed, i.e. K(m) values increased and V(max) decreased in a concentration dependent manner. Imipramine and clomipramine exhibited competitive inhibition, i.e. K(m) values increased and V(max) remained constant. The present results suggest that these therapeutic agents used for depression can also be considered as inhibitors of snake venom and human serum cholinesterase.  相似文献   

2.
Kinetic parameters of the effect of tacrine as a cholinesterase inhibitor have been studied in two different sources: snake venom (Bungarus sindanus) acetylcholinesterase (AChE) and human serum butyrylcholinesterase (BChE). Tacrine inhibited both venom acetylcholinesterase (AChE) as well as human serum butyrylcholinesterase (BChE) in a concentration-dependent manner. Kinetic studies indicated that the nature of inhibition was mixed for both enzymes, i.e. Km values increase and Vmax decrease with the increase of the tacrine concentration. The calculated IC50 for snake venom and for human serum were 31 and 25.6 nM, respectively. Ki was observed to be 13 nM for venom acetylcholinesterase (AChE) and 12 nM for serum butyrylcholinesterase (BChE). KI (constant of AChE-ASCh-tacrine complex into AChE-ASCh complex and tacrine) was estimated to be 20 nM for venom and 10 nM for serum butyrylcholinesterase (BChE), while the gammaKm (dissociation constant of AChE-ASCh-tacrine complex into AChE-tacrine complex and ASCh) were 0.086 and 0.147 mM for snake venom AChE and serum BChE, respectively. The present results suggest that this therapeutic agent used for the treatment of Alzheimer's disease can also be considered an inhibitor of snake venom and human serum butyrylcholinesterase. Values of Ki and KI show that tacrine had more affinity with these enzymes as compared with other cholinesterases from the literature.  相似文献   

3.
Acetylcholinesterase (AChE) was investigated inWalterinnesia aegyptia venom and characterized with respect to its kinetic properties. It was found that 4.0 ug of crude venom protein and an incubation time of 4.0 min were suitable conditions for linearity of AChE activity at 25°C. The optimum strength of the sodium phosphate buffer was 0.05 M, and the optimum pH was 7.75. The optimum temperature was 30°C. The activation energy and the heat of activation were observed to be 6510 and 5922 cal/mole. The AChE was specific for acetylthiocholine but it did not hydrolyse butyrylthiocholine. The optimum substrate concentration was 3.0 mM but at higher substrate concentrations, the AChE activity declined. The ASCh concentration ranges for different orders of the reactions were determined and kinetic parameters (Km, Vmax, kcat, and ksp) were established at each order of the reaction.Abbreviations AChE acetylcholinesterase - ASCh acetylthiocholine - Km Michaelis-Menten constant - Vmax the limiting maximal velocity - AChEa acylated enzyme - kcat turnover number - ksp specificity constant  相似文献   

4.
The kinetic parameters of the inhibition of pigeon brain acetylchlolinesterase (AChE) by procaine hydrochloride were investigated. Procaine (0·083–1·67 mM) reversibly inhibited AChE activity (15–83 percent) in a concentration dependent manner, the IC50 being about 0·38 mM. The Michaelis-Menten constant (Km) for the hydrolysis of acetylthiocholine iodide was found to be 1·53 × 10?4 M and the Vmax was 1·06 μmol min?1 mg?1 protein. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition is of the linear mixed type which is considered to be a mixture of partial competitive and pure non-competitive. The values of Ki(slope) and Ki (intercepts) were estimated as 0·14 mM and 0·22 mM respectively by the primary Dixon and by the secondary replots of the Lineweaver-Burk plot. The Ki′/Ki ratio shows that procaine has a greater affinity of binding for the peripheral than for the active site.  相似文献   

5.
This work addresses the kinetic analysis of the interaction of methotrexate (MTX) with human erythrocyte membrane-bound acetylcholinesterase (AChE, EC 3.1. 1.7). It was found that the MTX effect was independent of time of incubation with AChE before the addition of substrate which proves its reversible action. The IC50 was determined, by three methods, to be 0.73 mM. The Michaelis-Menten constant (Ks) for the hydrolysis of acetylthiocholine iodide (ASCh) by AChE was 0.13 mM in the control system, a value decreased by 30–61% in the MTX treated systems. The Vmax was 1.27tmole/min/mg protein for the control system while it was decreased by 44–77% in the MTX treated systems. The Linexveaver-Buck plot, Dixon plot, and their secondary replots indicated that the nature of the inhibition was of the linear mixed type, i.e. uncompetitive and noncompetitive. The values of Ki(slope) and KI(tntecept) were estimated as 1.67 and 0.34 mM, respectively.Abbreviations AChE acetylcholinesterase - ASCh acetylthiocholine - Ks Michaelis-Menten constant - Vmax the limiting maximal velocity - Ki inhibition constant - MTX methotrexate  相似文献   

6.
Substrate competition for human acetylcholinesterase (AChE) and human butyrylcholinesterase (BChE) was studies under steady-state conditions using wide range of substrate concentrations. Competing couples of substates were acetyl-(thio)esters. Phenyl acetate (PhA) was the reporter substrate and competitor were either acetylcholine (ACh) or acetylthiocholine (ATC). The common point between investigated substrates is that the acyl moiety is acetate, i.e. same deacylation rate constant for reporter and competitor substrate.Steady-state kinetics of cholinesterase-catalyzed hydrolysis of PhA in the presence of ACh or ATC revealed 3 phases of inhibition as concentration of competitor increased: a) competitive inhibition, b) partially mixed inhibition, c) partially uncompetitive inhibition for AChE and partially uncompetitive activation for BChE. This sequence reflects binding of competitor in the active centrer at low concentration and on the peripheral anionic site (PAS) at high concentration. In particular, it showed that binding of a competing ligand on PAS may affect the catalytic behavior of AChE and BChE in an opposite way, i.e. inhibition of AChE and activation of BChE, regardless the nature of the reporter substrate.For both enzymes, progress curves for hydrolysis of PhA at very low concentration (?Km) in the presence of increasing concentration of ATC showed that: a) the competing substrate and the reporter substrate are hydrolyzed at the same time, b) complete hydrolysis of PhA cannot be reached above 1 mM competing substrate. This likely results from accumulation of hydrolysis products (P) of competing substrate and/or accumulation of acetylated enzyme·P complex that inhibit hydrolysis of the reporter substrate.  相似文献   

7.
This work addresses the kinetic analysis of the interaction of tacrine with bovine retina acetylcholinesterase (AChE, E.C. 3.1.1.7). It was found that the tacrine effect was reversible in nature. Tacrine inhibited bovine retinal AChE activity in a concentration-dependent manner; IC50 was found to be 8.07 nM. The Michaelis-Menten constant (Ka) for the hydrolysis of acetylthiocholine iodide (ASCh) by AChE was 0.061 mM in the control system, and this value was increased by 54–67% in the tacrine-treated systems. The Vmax was 0.701 μ mole/min per milligram protein for the control system, but it was decreased by 26–69% in the tacrine-treated systems. The Lineweaver–Burk plot, Dixon plot, and their secondary replots indicated that the nature of the inhibition was of the partial mixed type, that is, a mixture of competitive and noncompetitive inhibition. The values of Ki and Kt were estimated to be as 4.475 and 8.517 nM, respectively. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 245–251, 1998  相似文献   

8.
Ibuprofen, one of the nonsteroidal anti-inflammatory drugs, inhibited arylamine N-acetyltransferase activity of Klebsiella pneumoniae both in vitro and in vivo. The NAT activities of Klebsiella pneumoniae were inhibited by ibuprofen in a dose-dependent manner both in vitro and in vivo. In vitro, the NAT activity was 0.675 ± 0.028 nmol/min/mg of protein for the acetylation of 2-aminofluorene. In the presence of 8 mM ibuprofen, the NAT activity was 0.506 ± 0.002 nmol/min/mg of protein for the acetylation of 2-aminofluorene. In vivo, the NAT activity was 0.279 ± 0.016 nmol/min/1010 colony forming units (CFU) for the acetylation of 2-aminofluorene. In the presence of 8 mM ibuprofen, the NAT activity was 0.228 ± 0.008 nmol/min/1010 CFU for the acetylation of 2-aminofluorene. The inhibition of NAT activity by ibuprofen was shown to persist for at least 4 h. For in vitro examination, the values of apparent K m and V max were 1.08 ± 0.05 mM and 9.17 ± 0.11 nmol/min/mg of protein, respectively, for 2-aminofluorene. However, when 8 mM of ibuprofen was added to the reaction mixtures, the values of apparent K m and V max were 1.19 ± 0.01 mM and 6.67 ± 0.11 nmol/min/mg of protein, respectively, for 2-aminofluorene. For in vivo examination, the values of apparent K m and V max were 1.24 ± 0.48 mM and 4.18 ± 1.06 nmol/min/10 × 1010 CFU, respectively, for 2-aminofluorene. However, when 8 mM of ibuprofen was added to the culture, the values of apparent K m and V max were 0.95 ± 0.29 mM and 2.77 ± 0.37 nmol/min/mg protein, respectively, for 2-aminofluorene, respectively. This report is the first finding of ibuprofen inhibition of arylamine N-acetyltransferase activity in a strain of Klebsiella pneumoniae. Received: 28 January 1997 / Accepted: 12 February 1997  相似文献   

9.
Kinetic parameters were evaluated for inhibition of native and reactivation of tabun-inhibited human erythrocyte acetylcholinesterase (AChE, EC 3.1.1.7) and human plasma butyrylcholinesterase (BChE, EC 3.1.1.8) by three bispyridinium para-aldoximes with butane (K074), but-2-ene (K075) or xylene-like linker (K114). Tested aldoximes reversibly inhibited both cholinesterases with the preference for binding to the native AChE. Both cholinesterases showed the highest affinity for K114 (Ki was 0.01 mM for AChE and 0.06 mM for BChE). The reactivation of tabun-inhibited AChE was efficient by K074 and K075. Their overall reactivation rate constants were around 2000 min−1 M−1, which is seven times higher than for the classical bispyridinium para-aldoxime TMB-4. The reactivation of tabun-inhibited AChE assisted by K114 was slow and reached 90% after 20 h. Since the aldoxime binding affinity of tabun-inhibited AChE was similar for all tested aldoximes (and corresponded to their Ki), the rate of the nucleophilic displacement of the phosphoryl-moiety from the active site serine was the limiting factor for AChE reactivation. On the other hand, none of the aldoximes displayed a significant reactivation of tabun-inhibited BChE. Even after 20 h, the reactivation maximum was 60% for 1 mM K074 and K075, and only 20% for 1 mM K114. However, lower BChE affinities for K074 and K075 compared to AChE suggest that the fast tabun-inhibited AChE reactivation by these compounds would not be obstructed by their interactions with BChE in vivo.  相似文献   

10.
Abstract Acetylcholinesterase (AChE) in the susceptible (S) and the resistant (R) strains of housefly (Musca domestica) was investigated using kinetic analysis. The Vmax values of AChE for hydrolyzing acetylthiocholine (ATCh) and butyrylthiocholine (BTCh) were 4578.50 and 1716.08nmol/min/mg* protein in the R strain, and were 1884.75 and 864.72 nmol/min/mg. protein in the Sstrain, respectively. The Vmax ratios of R to S enzyme were 2.43 for ATCh and 1.98 for BTCh. The Km values of AChE for ATCh and BTCh were 0.069 and 0.034 mmol/L in the S strain, and 0.156, 0.059 mmol/L in the R strain, respectively. The Km ratios of R to S enzyme were 2.26 for ATCh and 1.74 for BTCh. The ki ratios of S to R enzyme for three insecticides propoxur, methomyl and paraoxon were 46.04, 4.17 and 2. 86, respectively. In addition, kcat and kcat/Km for measuring turnover and catalytic efficiency of AChE were determined using eserine as titrant. The kcat values of AChE from the R strain for both ATCh and BTCh were higher than those values from the S strain. But the values of kcat/Km were in contrary to the kcat values with R enzyme compared to S enzyme. The AChE catalytic properties and sensitivity to the inhibition by three insecticides in the R and S strains of housefly were discussed based on contribution of Vmax, Km, ki, kcat and kcat/Km. All these data implied that AChE from the R strain might be qualitatively altered. We also observed an intriguing phenomenon that inhibitors could enhance the activity of AChE from the resistant strain. This “flight reaction” of the powerful enzyme might be correlated with the developing resistance of housefly to organophosphate or carbamate insecticides.  相似文献   

11.
Abstract

Ellman’s method is a standard protocol for the determination of cholinesterases activity. Though the method is ready for laboratory purposes, it has some drawbacks as well. In the current article, 2,6-dichloroindophenol acetate is performed as a chromogenic substrate suitable for acetylcholinesterase (AChE) activity examination. Michaelis constant and maximal velocity for 2,6-dichloroindophenol acetate were determined (38.0?µM and 244 pkat) and compared to the values for acetythiocholine (Km 0.18?mM; Vmax 5.1?nkat). Docking for 2,6-dichloroindophenol acetate and human AChE was done as well. In conclusion, 2,6-dichloroindophenol acetate seems to be suitable chromogenic substrate for AChE and spectrophotometry and based on this it can be easily performed whenever AChE activity should be tested.  相似文献   

12.
In an experiment with native maize roots depending on different phosphorus concentration in the external solution (0.001 … 50 mM P), the multiphasic character of the kinetics of phosphate uptake has been stated. The single phases are characterized by the different values of Km and Vmax. In the wide range of concentrations the isotherm of the phosphate uptake has five evident phases. The character of kinetics for the uptake of phosphate is analogical to the kinetics of the enzymatic reactions described by the Michaelis-Menten equation. On the other hand the linear dependence for the inactivated root was determined,i.e. the uptake of phosphate versus different phosphorus concentration in the external solution. The graphic representation of the logarithmic values for the phosphorus taken up versus the different phosphorus concentration in the external solution gives the biphasic course including concentration less than 1.0 mM P and more than 1.0 mM P. Within the framework of the concentration range the following values of Vmax, Km and ϕin were calculated under the conditions if the concentration of phosphorus is less than 1.0mMP: Vmax = 1.705 μmol P × g-1h-1, Km = 0.057 mM P and ϕin = 0.83,i.e. if the concentration of phosphorus is more than 1.0mM P: Vmax = 40 μmol P × g-1 h-1, Km = 16.66 mM and ϕin = 20. According to these results, the phosphate concentration in the external solution influences the activity of the transport mechanisms concerning their conformative changes which discretely change their working regime of membrane transport. This is also demonstrated in the change of values Vmax, Km and ϕin.  相似文献   

13.
Incubation of chloroplast coupling factor with 5′-p-fluorosulfonylbenzoyl adenosine in the 1 to 2 mM range inhibits subsequently measured ATPase activity. The inhibition is probably due to covalent binding since it survives ammonium sulfate fractionation and dialysis. The kinetics of the inhibited enzyme with respect to substrate show a decrease in Vmax with no change in Km for ATP. The presence of ATP or ADP together with the inhibitor provides some protection against inhibition. The results suggest a possible covalent attack at a nucleotide binding site, leading to inhibition of activity.  相似文献   

14.
Nemat Alla MM  Hassan NM 《Protoplasma》2012,249(4):1109-1117
Treatment of 14-day-old maize cultivars (Hybrid351 and Giza2) with 250 mM NaCl significantly reduced shoot fresh and dry weights and protein content during the subsequent 12 days. The magnitude of reduction was more pronounced in Giza than Hybrid. Both cultivars contained converging levels of protein for the enzymes phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), pyruvate phosphate dikinase (PPDK) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) under normal conditions; however, NaCl led to increase these levels in Hybrid and decrease them in Giza. Moreover, NaCl significantly inhibited the activities of PEPC, MDH and PPDK in both cultivars during the first 2 days, thereafter the inhibition nullified only in Hybrid; nonetheless, Rubisco was the least affected enzyme in both cultivars. In addition, NaCl slightly increased V max of PEPC, MDH and PPDK in Hybrid with no change in K m; nevertheless V max dropped in Giza with an increase in K m of only PEPC and MDH. Also K cat, K cat/K m and V max/K m of all enzymes were lower in treated Giza than in treated Hybrid. The increased V max of all enzymes in only Hybrid by NaCl confirms that they were synthesised more in Hybrid than in Giza. However, the decreased V max in Giza concomitant with the increased K m points to an interference of salinity with synthesis of enzymes and their structural integrity. This would lead to a noncompetitive inhibition for the enzymes. These findings declare that maize tolerance to NaCl was larger in Hybrid compared to Giza due to a role for C4 enzymes.  相似文献   

15.
Antidepressants, such as traditional tricyclic antidepressants (TCAs), are the first-line treatment for various pain syndromes. Available evidence indicates that TCAs may target Na+ channels for their analgesic action. In this report, we examined the effects of contemporary antidepressants sertraline and paroxetine on (1) neuronal Na+ channels expressed in GH3 cells and (2) muscle rNav1.4 Na+ channels heterologously expressed in Hek293t cells. Our results showed that both antidepressants blocked Na+ channels in a highly state-dependent manner. The 50% inhibitory concentrations (IC50) for sertraline and paroxetine ranged ∼18–28 μm for resting block and ∼2–8 μm for inactivated block of neuronal and rNav1.4 Na+ channels. Surprisingly, the IC50 values for both drugs were about 0.6–0.7 μm for the open channel block of persistent late Na+ currents generated through inactivation-deficient rNav1.4 mutant Na+ channels. For comparison, the open channel block in neuronal hNav1.7 counterparts yielded IC50 values around 0.3–0.4 μm for both drugs. Receptor mapping using fast inactivation-deficient rNav1.4-F1579A/K mutants with reduced affinities toward local anesthetics (LAs) and TCAs indicated that the F1579 residue is not involved in the binding of sertraline and paroxetine. Thus, sertraline and paroxetine are potent open channel blockers that target persistent late Na+ currents preferentially, but their block is not mediated via the phenylalanine residue at the known LA/TCA receptor site.  相似文献   

16.
研究了小菜蛾Plutella xylostella幼虫经苏云金杆菌Bacillus thuringiensis预处理后,对有机磷和氨基甲酸酯杀虫剂敏感性的变化以及预处理对小菜蛾幼虫体内乙酰胆碱酯酶、羧酸酯酶、谷胱甘肽S-转移酶和谷胱甘肽的含量的影响。结果表明:苏云金杆菌预处理抗性小菜蛾幼虫后,其对甲胺磷、水胺硫磷和克百威的敏感性分别为未处理组的6.74、8.83和8.50倍;处理敏感小菜蛾幼虫后则分别为未处理组的2.96、1.69和3.88倍。苏云金杆菌预处理抗性小菜蛾,未处理组乙酰胆碱酯酶的Km和Vmax值分别为预处理组的1.86和1.56倍,所使用的6种杀虫剂对乙酰胆碱酯酶的KI值,处理组为未处理组的1.80~2.66倍,苏云金杆菌预处理抗性小菜蛾对羧酸酯酶的Km、KI影响不大,但能显著地抑制羧酸酯酶和谷胱甘肽S-转移酶的活性并导致谷胱甘肽含量下降(对照分别为处理的2.02、1.76和1.66倍)。苏云金杆菌预处理敏感小菜蛾,对乙酰胆碱酯酶的Km、Vmax、KI值和羧酸酯酶的Km、KI值以及谷胱甘肽含量影响不大,但能显著地抑制羧酸酯酶和谷胱甘肽S-转移酶的活性(对照分别为处理的1.54和1.64倍)。  相似文献   

17.
Summary Maltose transport in S. cerevisiae was inhibited by ethanol and other alkanols in a non-competitive way. The Michaelis constant, Km, for the sugar, with or without alkanols was 5.9 mM, whereas the maximum trans port capacity, Vmax, decreased exponentially with alkanols concentration. The inhibitory capacity was positively correlated with the lipid solubility of the alkanols, indicating that inhibition is due to an alteration of the lipid environment of the maltose transport system in the plasma membrane.  相似文献   

18.
Two chymotrypsin isozymes (CTR 1 and CTR 2) from the midgut lumen of Locusta migratoria have been identified and purified. MALDI-TOF mass spectrometry revealed an Mr of 22 679 (±30) for CTR 1 and 22 592 (±30) for CTR 2. Both chymotrypsins hydrolysed S-(Ala)2ProPhe-pNA (CTR 1: Km=0.29±0.01 mM, Vmax=83.0±1.4 U/mg; CTR 2: Km=0.42±0.01 mM, Vmax=48.9±1.1 U/mg) and S-(Ala)2ProLeu-pNA (CTR 1: Km=0.50±0.04 mM, Vmax=1.7±0.1 U/mg; CTR 2: Km=1.12±0.08 mM, Vmax=11.4±0.6 U/mg), but neither enzyme hydrolysed BTpNA, S-Phe-pNA, Ac-Leu-pNA or S-(Ala)3-pNA. CTR 1 and CTR 2 activities were effectively inhibited by AEBSF, PMSF, TPCK, chymostatin, SBTI and BPTI. Using S-(Ala)2ProPhe-pNA as the substrate, CTR 1 gave optimal activity between pH 8.0 and 10.0, while CTR 2 was optimally active over the range pH 8.0–11.0. The N-terminal 15 amino acids of the purified chymotrypsins were determined, revealing their unique sequences which are also different from another, previously characterised Locusta chymotrypsin.  相似文献   

19.
Glutamic acid was found to be growth inhibitory to a murinelymphocyte hybridoma in a concentration-dependent manner from 3to 12 mM glutamate. At 12 mM glutamate there was a 70% decreasein the specific growth rate of the cells. Attempts to alleviateinhibition or adapt cells to growth in glutamate-based mediawere unsuccessful. It is proposed that elevated glutamate levelsimpair adequate uptake of cystine, a critical amino acid for thesynthesis of glutathione. Glutathione is required by cells toprevent intracellular oxidative stress. The measured rate ofuptake of U-14C L-cystine into the cells was found to havethe following parameters: Km = 0.87 mM, Vmax = 0.9nmole/mg cell protein per min. The uptake was sodiumindependent and resembled the previously described x- ctransport system, with elevated glutamate levels causingextensive inhibition. Glutamate at a concentration of 1.4 mMcaused a 50% decrease in cystine uptake from the serum-freegrowth medium. Glutamate was taken up from the external medium(Km = 20 mM and Vmax = 12.5 nmole/mg cell protein permin) by the same transport system in a stereo specific, sodiumindependent manner. Of the amino acids examined, it was foundthat cystine and homocysteic acid were the most extensiveinhibitors of glutamate uptake and that inhibition was competitive. Metabolic profiles of the cells grown in culturescontaining enhanced glutamate levels revealed an overallincrease in net production of alanine, serine, asparagine andaspartate. A substantially increased specific consumption ofglutamate was accompanied by a decreased consumption of cystine,valine and phenylalanine.The combined kinetic and metabolic results indicate thatglutamate and cystine are taken up by the anionic transportsystem x- c. The increasing levels of glutamate in themedium result in a decreased transport of cystine by this systemdue to competitive inhibition by glutamate.  相似文献   

20.
Recent reports of extremely low retinoid stores in fish living in contaminated river systems prompted an initial investigation of the mechanisms of hepatic storage and mobilization in brook trout. Enzyme characterization in microsomes revealed a lecithin:retinol acyltransferase activity (LRAT) optimum in the alkaline range (pH 9.0; Vmax=0.6 nmol per mg prot. h−1; Km=10.2 μM) which is not known to occur in mammals, in addition to a secondary optimum at pH 6.5 typical of mammals. Acyl CoA:retinol acyltransferase (ARAT) kinetic parameters were quite different to those of mammals. The substrate affinity of trout ARAT (Km=1.6 μM) was approximately 22-fold greater than that of the rat while maximal velocity (Vmax=0.2 nmol per mg prot. h−1) was 18-fold less. Retinyl ester hydrolase activity (REH) was optimal under acid conditions (pH 4.2; Vmax=6.6 nmol per mg prot. h−1; Km=0.6 mM), was inhibited by a bile salt analogue and was greater in males than females. This REH was tentatively categorized as a bile salt-independent, acid retinyl ester hydrolase (BSI-AREH). REH was inhibited in a dose-dependent manner following in vivo exposure to a representative environmental contaminant the coplanar polychlorinated biphenyl (PCB), 3,3′,4,4′-tetrachlorobiphenyl (TCBP). Inhibition may be an indirect effect because enzyme activity was not affected by in vitro exposure of control microsomes. REH inhibition in the brook trout may affect the uptake of retinyl esters (REs) from chylomicron remnants as well as the mobilization of stored REs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号