首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
New 4,6-diaryl-4,5-dihydro-2-phenyl-2H-indazol-3-ols 25-32 were designed, synthesized and in vitro microbially evaluated using clinically isolated bacterial strains viz Staphylococcus aureus, β-Heamolytic streptococcus, Vibreo cholerae, Salmonella typhii, Shigella felxneri and fungal strains viz Aspergillus flavus, Mucor, Rhizopus and Microsporum gypsuem. Results of this study showed that the nature of the substituents on the phenyl rings viz., methyl, methoxy, chloro, nitro as well as the bromo functions at the meta and para positions of the aryl moieties determined the nature and extent of the activity of the fused indazolonol compounds 25-32.  相似文献   

2.
The sigma-2 (σ2) receptor has been suggested to be a promising target for pharmacological interventions to curb tumor progression. Development of σ2-specific ligands, however, has been hindered by lack of understanding of molecular determinants that underlie selective ligand-σ2 interactions. Here we have explored effects of electron donating and withdrawing groups on ligand selectivity for the σ2 versus σ1 receptor using new benzamide-isoquinoline derivatives. The electron-donating methoxy group increased but the electron-withdrawing nitro group decreased σ2 affinity. In particular, an extra methoxy added to the para-position (5e) of the benzamide phenyl ring of 5f dramatically improved (631 fold) the σ2 selectivity relative to the σ1 receptor. This para-position provided a sensitive site for effective manipulation of the sigma receptor subtype selectivity using either the methoxy or nitro substituent. Our study provides a useful guide for further improving the σ2-over-σ1 selectivity of new ligands.  相似文献   

3.
A collection of 4-(4-morpholinophenyl)-6-aryl-6H-1,3-thiazin-2-amines (20–28) were synthesized and their in vitro antimicrobial activity was investigated. Compound 21 against P. aeruginosa, 23 against B. subtilis, 24 against V. cholerae and P. aeruginosa, 26 against S. aureus and B. subtilis, 27 against B. subtilis and E. coli, and 28 against all tested bacterial strains exerted excellent antibacterial activity. Compound 20 against A. flavus and Rhizopus, 21, 26 against Rhizopus, 22, 27 against Mucor, 23 against A. flavus, 24 against both A. flavus and Mucor, 25 against all tested strains, and 28 against Rhizopus and M. gypseum exerted excellent antifungal activity.  相似文献   

4.
A novel class of 4,6-diaryl-4,5-dihydro-3-hydroxy-2[H]-indazoles 25-32 were synthesized and evaluated for their in vitro antibacterial and antifungal activities. Four Compounds, which all possessed electron withdrawing functional groups (–Cl,NO2, –Br) 27, 28, 30 and 32 were more potent against the tested bacterial/fungal strains than the standard bacterial and fungal drugs ciprofloxacin and fluconazole respectively.  相似文献   

5.
The series of novel Mannich bases were synthesized and evaluated for their in vitro antibacterial activity against Gram‐positive and Gram‐negative bacterial strains. The results showed that all compounds were less active than the drugs used as reference, but some of them had moderate potency against Staphylococcus epidermidis ATCC 12228 and Bacillus subtilis ATCC 6633. The presence of a phenyl ring in the position 4 of piperazine seems to be necessary for antibacterial activity in this class of compounds.  相似文献   

6.
New (E)-1-(4-methyl-2-(alkylamino)thiazol-5-yl)-3-arylprop-2-en-1-ones, unsubstituted or carrying fluoro, bromo, methoxy, nitro, methyl and chloro groups on the benzene ring, were synthesized and assayed in vitro for their antimicrobial activity against Gram positive and Gram negative bacteria and fungi. The compounds were very potent towards all tested microorganisms and in most cases their activity was better than that of reference drugs.  相似文献   

7.
A novel series of amino acids conjugated quinazolinone-Schiff’s bases were synthesized and screened for their in vitro anticancer activity and validated by molecular docking and DNA binding studies. In the present investigations, compounds 32, 33, 34, 41, 42 and 43 showed most potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to doxorubicin and ethidium bromide as a positive control respectively. The structure-activity relationship (SAR) revealed that the tryptophan and phenylalanine derived electron donating groups (OH and OCH3) favored DNA binding studies and anticancer activity whereas; electron withdrawing groups (Cl, NO2, and F) showed least anticancer activity. The molecular docking study, binding interactions of the most active compounds 33, 34, 42 and 43 stacked with A–T rich regions of the DNA minor groove by surface binding interactions were confirmed.  相似文献   

8.
A series of compounds derived from the 2-amino-4-(2-pyridyl) thiazole scaffold was synthesized and tested for in vitro antimycobacterial activity against the Mycobacterium tuberculosis H37Rv strain, antiplasmodial activity against the chloroquine sensitive NF54 Plasmodium falciparum strain and cytotoxicity on a mammalian cell line. Optimal antimycobacterial activity was found with compounds with a 2-pyridyl ring at position 4 of the thiazole scaffold, a substituted phenyl ring at the 2-amino position, and an amide linker between the scaffold and the substituted phenyl. The antiplasmodial activity was best with compounds that had the phenyl ring substituted with hydrophobic electron withdrawing groups.  相似文献   

9.
Ten novel xylan bisphenylcarbamate derivatives bearing meta‐ and para‐substituents on their phenyl groups were synthesized and their chiral recognition abilities were evaluated as the chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC) after coating them on macroporous silica. The chiral recognition abilities of these CSPs depended on the nature, position, and number of the substituents on the phenyl moieties. The introduction of an electron‐donating group was more attractive than an electron‐withdrawing group to improve the chiral recognition ability of the xylan phenylcarbamate derivatives. Among the CSPs discussed in this study, xylan bis(3,5‐dimethylphenylcarbamate)‐based CSP seems to possess the highest resolving power for many racemates, and the meta‐substituted CSPs showed relatively better chiral recognition than the para‐substituted ones. For some racemates, the xylan bis(3,5‐dimethylphenylcarbamate) derivative exhibited higher enantioselectivity than the CSP based on cellulose tris(3,5‐dimethylphenylcarbamate). Chirality 27:518–522, 2015 © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Novel series of disulfide and sulfone hybrid analogs (1 2 0) were synthesized and characterized through EI-MS and 1H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20–88.16 μM as compared to standard d-saccharic acid 1,4 lactone (48.4 ± 1.25 μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies.  相似文献   

11.
Some 2,6-diarylpiperidin/tetrahydrothiopyran/tetrahydropyran-4-one oximes were synthesized in dry media under microwave irradiation and were evaluated for their in vitro antibacterial activity against clinically isolated bacterial strains i.e. S.aureus, β-H.Streptococcus, E.coli, P.aeruginosa, S.typhii and in vitro antifungal activities against fungal strains i.e. C.albicans, Rhizopus, A.niger and A.flavus. Structure-activity relationships for the synthesized compounds showed that compounds 12 and 15 exerted excellent antibacterial activity against all the tested bacterial strains except 15 against S.aureus and β-H.streptococcus. Against C.albicans and A.flavus, compound 15 exerted potent antifungal activities while against Rhizopus, compound 16 showed promising activity.  相似文献   

12.
Some novel ‘tailor-made’ compounds, 6,6-dimethyl-7,9-diaryl-1,2,4,8-tetraazaspiro[4.5]decan-3-thiones 23–27 have been studied for their in vitro antibacterial activity against Staphylococcus aureus, β-Heamolytic streptococcus, Vibreo cholerae, Salmonella typhii, Shigella felxneri, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and anti-fungal activity against Aspergillus flavus, Mucor, Rhizopus and Microsporum gypsuem. Compounds 24 and 25 exerted potent antibacterial activity against S. aureus, β-H. streptococcus, E. coli and P. aeruginosa whereas all compounds 23–27 exerted strong in vitro antifungal activity against A. flavus, Mucor and Rhizopus.  相似文献   

13.
A series of coumarin‐tagged β‐lactam triazole hybrids ( 10a – 10o ) were synthesized and tested for their cytotoxic activity against MDA‐MB‐231 (triple negative breast cancer), MCF‐7 (estrogen receptor positive breast cancer (ER+)) and A549 (human lung carcinoma) cancer cell lines including one normal cell line, HEK‐293 (human embryonic kidney). Two compounds 10b and 10d exhibited substantial cytotoxic effect against MCF‐7 cancer cell lines with IC50 values of 53.55 and 58.62 μm , respectively. More importantly, compounds 10b and 10d were non‐cytotoxic against HEK‐293 cell lines. Structure–activity relationship (SAR) studies suggested that the nitro and chloro group at the C‐3 position of phenyl ring are favorable for anticancer activity, particularly against MCF‐7 cell lines. Furthermore, antimicrobial evaluation of these compounds revealed modest inhibition of examined pathogenic strains with compounds 10c and 10i being the most promising antimicrobial agents against Pseudomonas aeruginosa and Candida albicans, respectively.  相似文献   

14.
In this work, we reported the synthesis and evaluation of antibacterial and antifungal activities of three new compound series obtained from 6-(phenyl/4-chlorophenyl)imidazo[2,1-b]thiazole-3-acetic acid hydrazide: 2-{[6-(phenyl/4-chlorophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl}-N-alkyl/arylhydrazinecarbothioamides (2a–d), 4-alkyl/aryl-2,4-dihydro-5-{[6-(phenyl/4-chlorophenyl)imidazo[2,1-b]thiazol-3-yl]methyl}-3H-1,2,4-triazole-3-thiones (3a–n), and 2-alkyl/arylamino-5-{[6-(phenyl/4-chlorophenyl)imidazo[2,1-b]thiazol-3-yl]methyl}-1,3,4-thiadiazoles (4a–g). The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR (APT), mass and elemental analysis. Their antibacterial and antifungal activities were evaluated against Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Candida albicans ATCC 10231, C. parapsilosis ATCC 22019, C. krusei ATCC 6258, Trichophyton mentagrophytes var. erinacei NCPF 375, Microsporum gypseum NCPF 580, and T. tonsurans NCPF 245. 3c, 3f, 3m, 3n, and 4e showed the highest antibacterial activity. Particularly 3c, 3f, 3g, 3k, 3n, 4a, 4e, and 4g showed the highest antifungal activity against tested fungi.  相似文献   

15.
A series of aryl fluorosulfate analogues (137) were synthesized and tested for in vitro antibacterial and antifungal studies, and validated by docking studies. The compounds 9, 12, 14, 19, 25, 26, 35, 36 and 37 exhibited superior antibacterial potency against tested bacterial strains, while compounds 2, 4, 5, 15, 35, 36 and 37 were found to have better antifungal activity against tested fungal strains, compared to standard antibiotic gentamicin and ketoconazole respectively. Among all the synthesized 37 analogs, compounds 25, 26, 35, 36 and 37 displayed excellent anti-biofilm property against Staphylococcus aureus. The structure–activity relationship (SAR) revealed that the antimicrobial activity depends upon the presence of –OSO2F group and slender effect of different substituent’s on the phenyl rings. The electron donating (OCH3) groups in analogs increase the antibacterial activity, and interestingly the electron withdrawing (Cl, NO2, F and Br) groups increase the antifungal activity (except compound 35, 36 and 37). The mechanism of potent compounds showed membrane damage on bacteria confirmed by SEM. Compounds 35, 36 and 37 exhibited highest glide g-scores in molecular docking studies and validated the biocidal property.  相似文献   

16.
A series of benzoxazinones 128 were synthesized via reaction of anthranilic acid with various substituted benzoyl chlorides in the presence of triethylamine in chloroform. Compounds 118 showed a good inhibition of α-chymotrypsin with IC50 ± SEM values between 6.5 and 341.1 μM. Preliminary structure-activity relationships studies indicated that the presence of substituents on benzene ring reduces the inhibitory potential of benzoxazinone. Also the increased inhibitory potential due to fluoro group at phenyl substituent was observed followed by chloro and bromo substituents. Compounds with strong electron donating or withdrawing groups on phenyl substituent, showed a good inhibitory potential at ortho > meta > para position. Kinetics studies showed diverse types of inhibition, except uncompetitive-type inhibition. The Ki values ranged between 4.7 and 341.2 μM. Interestingly, most of these compounds were non-cytotoxic to 3T3 cell line at 30 μM, except compounds 6, 14 and 15. Competitive inhibitors of chymotrypsin are like to inhibit other α-chymotrypsin-like serine proteases due to structural and functional similarities between them. The inhibitors identified during the current study deserve to be further studied for their therapeutic potential against abnormalities mediated by chymotrypsin or other serine protease.  相似文献   

17.
In this study, a series of novel 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole (6a–g) and 1,3,4-oxadiazole (7a–g, 8) were synthesized from N-(6-chlorobenzo[d]thiazol-2-yl) hydrazine carboxamide derivatives of benzothiazole class. Antimicrobial properties of the title compound derivatives were investigated against one Gram (+) bacteria (Staphylococcus aureus), three Gram (?) bacteria (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and five fungi (Candida albicans, Aspergillus niger, Aspergillus flavus, Monascus purpureus and Penicillium citrinum) using serial plate dilution method. The investigation of antibacterial and antifungal screening data revealed that all the tested compounds showed moderate to good inhibition at 12.5–100?µg/mL in DMSO. It has been observed that triazolo-thiadiazole derivatives are found to be more active than 1,3,4-oxadiazole derivatives against all pathogenic bacterial and fungal strains.  相似文献   

18.
In this study, new 3-[(1(2H)-phthalazinone-2-yl(methyl/ethyl]-4-aryl-1,2,4-triazole-5-thione and 2-[[1(2H)-phthalazinone-2-yl]methyl/ethyl]-5-arylamino-1,3,4-thiadiazole derivatives were synthesized. Antimicrobial properties of the title compounds were investigated against two Gram (+) bacteria (S. aureus, B. subtilis), two Gram ( ? ) bacteria (P. aeruginosa, E. coli) and two yeast-like fungi (C. albicans and C. parapsilosis) using the broth microdilution method. Generally the compounds were found to be active against B. subtilis and the fungi. Derivatives carrying a 1,3,4-thiadiazole ring generally showed higher antimicrobial activity against B. subtilis and the fungi when compared to other synthesized compounds.  相似文献   

19.
The aqueous, ethyl acetate, methanolic and Total Oligomer Flavonoids (TOF) enriched extracts, obtained from the aerial parts of Cyperus rotundus, were investigated for their contents in phenolic compounds. Antioxidative activity using the NBT/riboflavin assay system, antimicrobial activity against Gram positive and Gram negative bacterial reference strains as well as antigenotoxic activity tested with the SOS chromotest assay were also studied. Significant antibacterial activity against reference strains; Staphylococcus aureus, Enterococcus faecalis, Salmonella enteritidis and Salmonella typhimurium, was detected in the presence of ethyl acetate and TOF enriched extracts. In addition to their antimicrobial activity, the same extracts showed a significant ability to inhibit nitroblue tetrazolium reduction by the superoxide radical in a non enzymatic O2.− generating system, and were also able to reduce significantly the genotoxicity induced by nifuroxazide and Aflatoxin B1. The antioxidant, antimicrobial and antigenotoxic activities exhibited by C. rotundus depend on the chemical composition of the tested extracts.  相似文献   

20.
Nine new spiroacridine derivatives were synthetized by introducing cyano-N-acylhydrazone group between the acridine and phenyl-substituted rings followed by spontaneous cyclization. The new compounds were assayed for their DNA binding properties, human topoisomerase IIα inhibition and bovine serum albumin (BSA) interaction. Besides, docking analysis were performed in order to better understanding the biomolecule-compounds interactions. All compounds interacted with BSA which was demonstrated by the fluorescence suppression constant of 104?M?1. Compounds with chloro and NO2 substituents at that para-position on phenyl ring demonstrated the best results for BSA interaction. DNA binding constant determined by UV–vis data demonstrated high values for AMTAC-11 and AMTAC-14, 1.1?×?108?M?1 and 4.8?×?106?M?1, respectively, and all others presented constant values of 105?M?1. AMTAC-06 with chloro at para-position on phenyl ring presented a topoisomerase II inhibition of 84.34% in comparison to the positive controls used. Docking studies indicated that AMTAC-06 is able to intercalate the DNA base pairs at topoisomerase IIα active site, preventing DNA connection after break, in a process known as poisoning. Topoisomerase enzyme inhibition result was correlated to BSA interaction profile, since AMTAC-06 showed the best results in both analysis. The findings obtained here proved that methoxy or chloro substitution on phenyl ring at para-position is fundamental for in vitro activity of new spiroacridine derivatives, and indicates that AMTAC-06 is a promising entity and should serve as a lead compound in the development of new DNA and protein binders, as well as human topoisomerase II inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号