首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compounds based on the isoxazoline moiety were screened for their antimycobacterial activity in vitro against Mycobacterium tuberculosis H37R (MTB), and INH (isoniazid) resistant Mycobacterium tuberculosis (INHR-MTB) using the agar dilution method and bactec 460. Among the synthesized compounds, 4-[5-(4-bromophenyl)-4,5-dihydro-3-isoxazolyl]-2-methylphenol (4l) was found to be the most active agent against MTB and INHR-MTB with minimum inhibitory concentration of 0.62 microM. When compared to INH, compound (4l) was 1.12 fold and 3.0 fold more active against MTB and INHR-MTB, respectively.  相似文献   

2.
In this study, a series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized and evaluated for antimycobacterial activity against Mycobacterium tuberculosis (MTB) H37Rv and isoniazid resistant M. tuberculosis (INHR-MTB). All the newly synthesized compounds were showing moderate to high inhibitory activities. The compound 6,7-dimethoxy-3-(4-chloro phenyl)-4H-indeno[1,2-c]isoxazole (4b) was found to be the most promising compound, active against MTB H37Rv and INHR-MTB with minimum inhibitory concentrations of 0.22 and 0.34 μM.  相似文献   

3.
A series of N1-nicotinoyl-3- (4'-hydroxy-3'-methyl phenyl)-5-(substituted phenyl)-2-pyrazolines were synthesized by the reaction between isoniazid (INH) and chalcones and were tested for their antimycobacterial activity in vitro against Mycobacterium tuberculosis H37Rv (MTB) and INH-resistant M. tuberculosis (INHR-MTB) using the agar dilution method. Among the synthesized compounds, compound (i) N1-nicotinyl-3-(4'-hydroxy-3'-methyl phenyl)-5-(1'-chlorophenyl)-2-pyrazoline was found to be the most active agent against MTB and INHR-MTB, with minimum inhibitory concentration of 0.26 microm. When compared to INH-compound i was found to be 2.8- and 43.7-fold more active against MTB and INHR-MTB, respectively.  相似文献   

4.
A series of 6,7-dimethoxy-3-(4-pyridyl)-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-yl-4-substituted phenylmethanone/ethanone derivatives were synthesized and in vitro activity against mycobacterium tuberculosis (MTB) and INHR-MTB were carried out. Among the synthesized compounds, compound (4h) 6,7-dimethoxy-3-(4-pyridyl)-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-yl-4-pyridyl methanone was found to be the most active agent against MTB and INHR-MTB with a minimum inhibitory concentration of 0.22 μM.  相似文献   

5.
In this study, a series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized and evaluated for antimycobacterial activity against Mycobacterium tuberculosis (MTB) H(37)Rv and isoniazid resistant M. tuberculosis (INHR-MTB). All the newly synthesized compounds were showing moderate to high inhibitory activities. The compound 6,7-dimethoxy-3-(4-chloro phenyl)-4H-indeno[1,2-c]isoxazole (4b) was found to be the most promising compound, active against MTB H(37)Rv and INHR-MTB with minimum inhibitory concentrations of 0.22 and 0.34 μM.  相似文献   

6.
A series of 6,7-dimethoxy-3-(4-pyridyl)-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-yl-4-substituted phenylmethanone/ethanone derivatives were synthesized and in vitro activity against mycobacterium tuberculosis (MTB) and INHR-MTB were carried out. Among the synthesized compounds, compound (4h) 6,7-dimethoxy-3-(4-pyridyl)-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-yl-4-pyridyl methanone was found to be the most active agent against MTB and INHR-MTB with a minimum inhibitory concentration of 0.22 μM.  相似文献   

7.
A series of novel isoniazid (INH) analogues were synthesized by microwave assisted one pot reaction of INH, various benzaldehydes and dimedone in water with catalytic amount of DBSA. The synthesized compounds were evaluated for their anti-TB activity against Mycobacterium tuberculosis H37Rv (MTB) and multi-drug resistant Mycobacterium tuberculosis (MDR-TB). Among the 29 compounds, compound N-[9-[2-(benzyloxy)phenyl]-3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,5,6,7,8,9-octahydro-10(1H)-acridinyl]isonicotinamide (12) inhibited MTB with MIC of <0.17 μM and MDR-TB with MIC of 0.69 μM.  相似文献   

8.
The appearance multi-drug resistant Mycobacterium tuberculosis (MTB) throughout the world has prompted a search for new, safer and more active agents against tuberculosis. Based on studies of the biosynthesis of mycobacterial cell wall polysaccharides, octyl 5-O-(α- -arabinofuranosyl)-α- -arabinofuranoside analogues were synthesized and evaluated as inhibitors for M. tuberculosis and Mycobacterium avium. A cell free assay system has been used for the evaluation of these disaccharides as substrates for mycobacterial arabinosyltransferase activity.  相似文献   

9.
Summary Tuberculosis is a leading killer disease of the world with increasing mortality due to HIV-infected individuals becoming highly prone to this infection. An attempt has been made in the present work to identify novel plant-derived compounds active against Mycobacterium tuberculosis (MTB) through construction of a target based bio-screen to facilitate rapid screening of anti-TB plant compounds. To achieve this, construction of a genetically modified model system was attempted in fast growing, non-pathogenic, Escherichia coli in which experimental testing is relatively easier and rapid as compared to M. tuberculosis, which is pathogenic and slow growing in nature. The exquisitely high sensitivity of M. tuberculosis to isoniazid (INH) has been attributed to lesions in oxyR, a gene that positively regulates the expression of a set of hydrogen peroxide-inducible genes in E. coli and S. typhimurium. Moreover in the mechanism of emergence of INH resistance in M. tuberculosis, oxidative stress response has been implicated. In this study, mutants of E. coli defective in oxidative stress response function were derived and used to screen plant compounds, which might interfere with the oxidative stress response in MTB. Since MTB is inherently known to be oxyR defective and thus being highly sensitive to INH, mutants defective in oxidative stress response were isolated to construct a model system in E. coli, which is otherwise INH resistant, having functional oxyR. These mutants showed simultaneous sensitivity to oxidative stress-causing agents like hydrogen peroxide and cumene hydroperoxide. To further define the mutational lesions, complementation studies were carried out through mobilization of cloned wild type genes involved in the oxidative stress response and in this way a biological screen was constructed to identify plant compounds/essential oils/extracts/oil components which induce oxidative stress. The positives were finally tested for activity against M. tuberculosis strain H37Rv using the radiometric BACTEC 460 TB system. Interestingly, the bioactives were found to be active against the pathogen with marked potency, as the reduction in δGI values for the identified bioactives against M. tuberculosis were significant. The study demonstrates application of a specific target-based genetic model system in E. coli as a rapid high throughput screen in identifying anti-mycobacterials from plants.  相似文献   

10.
A series of 2-{4-[1-amino (thioxo) methyl-5-(substituted phenyl)-4,5-dihydro-1H-3-pyrazolyl]-2-methoxyphenoxy}acetic acid and 2-{4-[1-carbamoyl-5-(substituted phenyl)-4,5-dihydro-1H-3-pyrazolyl]-2-methoxyphenoxy}acetic acid were synthesized and the in vitro activity of the synthesized compounds against Mycobacterium tuberculosis H37Rv (MTB) and INH-resistant M. tuberculosis (INHR-MTB) was studied. Among the synthesized compounds, compound (3f) 2{-[4-(1-carbamoyl-5-(chlorophenyl)-4,5-dihydro-1H-3-pyrazolyl]-2-methoxyphenoxy}acetic acid was found to be the most active against M. tuberculosis H37Rv (MTB) and INH-resistant M. tuberculosis (INHR-MTB) with minimum inhibitory concentration of 0.06 microg/ml.  相似文献   

11.
Abstract

In a quest for developing novel anti-tubercular agents, a series of 3-benzylidene-4-chromanones 1al were evaluated for growth inhibition of Mycobacterium tuberculosis H37Rv. Three promising compounds 1d, g, j emerged as the lead compounds with the IC50 and IC90 values of less than 1?µg/mL. Evaluation of the potent compounds 1d, g, j and k against Vero monkey kidney cells revealed that these compounds are far more toxic to M. tuberculosis than to Vero cells. Structure–activity relationships demonstrated that 3-benzylidene-4-chromanones are more potent against M. tuberculosis than the related 2-benzylidene cycloalkanones and the meta substituted chromanone derivatives are more active than their ortho- and para-counterparts. Some guidelines for amplifying the project are presented.  相似文献   

12.
Various 5-nitro-2-furoic acid hydrazones were synthesized and evaluated for in vitro activities against log and starved phase culture of two mycobacterial species and Mycobacterium tuberculosis (MTB) isocitrate lyase (ICL) enzyme inhibition studies. Among twenty one compounds, 5-nitro-N′-[(5-nitro-2-furyl)methylidene]-2-furohydrazide (4o) was found to be the most active compound in vitro with MICs of 2.65 and 10.64 μM against log- and starved-phase culture of MTB. Compound 4o also showed good enzyme inhibition of MTB ICL at 10 μM. The docking studies also confirmed the binding potential of the compounds at the ICL active site.  相似文献   

13.
Eighteen 5-nitrofuran-2-yl derivatives were prepared by reacting 5-nitro-2-furfural with various (sub)phenyl/pyridyl thiosemicarbazide using microwave irradiation. The compounds were tested for their in vitro activity against tubercular and various non-tubercular mycobacterium species in log-phase and 6-week-starved cultures. Compound N-(3,5-dibromopyridin-2-yl)-2-((5-nitrofuran-2-yl)methylene)hydrazinecarbothioamide (4r) was found to be the most potent compound (MIC: 0.22 μM) and was 3 times more active than standard isoniazid (INH) and equally active as rifampicin (RIF) in log-phase culture of Mycobacterium tuberculosis H37Rv. In starved M. tuberculosis H37Rv, 4r inhibited with MIC of 13.9 μM and was found to be 50 times more active than INH and slightly more active than RIF.  相似文献   

14.
Need for new drugs to fight against tuberculosis (TB) is increasing day by day. In the present work we have taken a spiro compound (GSK 2200150A) reported by GSK as a lead and we modified the structure of the lead to study the antitubercular activity. For structure activity profiling twenty-one molecules have been synthesized, characterized and evaluated for their antimycobacterial potency against both active and dormant TB. Compound 06, 1-((4-methoxyphenyl)sulfonyl)-4′,5′-dihydrospiro[piperidine-4,7′-thieno[2,3-c]pyran] was found to be the most potent compound (MIC: 8.23?µM) in active TB and was less effective than the lead but more potent than standard first line drug ethambutol. It was also found to be more efficacious than Isoniazid and Rifampicin and equipotent as Moxifloxacin against dormant Mycobacterium tuberculosis (MTB). Compound 06 also showed good inhibitory potential against over expressed latent MTB enzyme lysine ε-amino transferase with an IC50 of 1.04?±?0.32?µM. This compound is a good candidate for drug development owing to potential against both active and dormant stages of MTB.  相似文献   

15.
In the present investigation, a series of 3-substituted-N-aryl-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide analogues were synthesized and were evaluated for antitubercular activity by two fold serial dilution technique. All the newly synthesized compounds showed moderate to high inhibitory activities against Mycobacterium tuberculosis H37Rv and INH resistant M. tuberculosis. The compound N,3-bis(4-fluorophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (4c) was found to be the most promising compound active against M. tuberculosis H37Rv and isoniazid resistant M. tuberculosis with minimum inhibitory concentration 0.78 μM.  相似文献   

16.
A series of novel (E)-4-oxo-2-crotonamide derivatives were designed and synthesized to find potent antituberculosis agents. All the target compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv(MTB). Results reveal that 4-phenyl moiety at part A and short methyl group at part C were found to be favorable. Most of the derivatives displayed promising activity against MTB with MIC ranging from 0.125 to 4?µg/mL. Especially, compound IIIa16 was found to have the best activity with MIC of 0.125?μg/mL against MTB and with MIC in the range of 0.05–0.48?µg/mL against drug-resistant clinical MTB isolates.  相似文献   

17.
Twenty eight 5-nitrothiazole derivatives were synthesized and evaluated for in vitro activities against Mycobacterium tuberculosis (MTB), cytotoxicity against HEK 293T. Among the compounds, 5-nitro-N-(5-nitrothiazol-2-yl)furan-2-carboxamide (20) was found to be the most active compound in vitro with MICs of 5.48 μM against log-phase culture of MTB and also non-toxic up to 100 μM.  相似文献   

18.
In present investigation, a series of substituted phenyl-5,6-dimethoxy-1-oxo-2,5-dihydro-1H-2-indenylmethanone analogues were synthesized and were evaluated for antimycobacterial activity against Mycobacterium tuberculosis H37Rv and INH resistant M. tuberculosis. All the newly synthesized compounds were showing moderate to high inhibitory activities. The compound 5,6-dimethoxy-1-oxo-2,5-dihydro-1H-2-indenyl-4-fluorophenylmethanone (5g) was found to be the most promising compounds active against M. tuberculosis H37Rv and isoniazid (INH) resistant M. tuberculosis with Minimum inhibitory concentration 0.10 and 0.10 μM.  相似文献   

19.
A series of pyrazoline derivatives were synthesized and in vitro activity against Mycobacterium tuberculosis H37Rv was carried out. Among the synthesized compounds, compounds (4d) and (4f) 4-aminophenyl-3-(3,4-dimethoxyphenyl)-6,7-dimethoxy-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-ylmethanone and 4-aminophenyl-6,7-dimethoxy-3-phenyl-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-ylmethanone were found to be the most active agent against M. tuberculosis H37Rv with a minimum inhibitory concentration of 10?μg/mL.  相似文献   

20.
The 1,3-dipolar cycloaddition of azomethine ylides derived from substituted isatins and 1,3-thiazolane-4-carboxylic acid to a series of 1-methyl-3,5-bis[(E)-arylmethylidene]-tetrahydro-4(1H)-pyridinones afforded novel spiro-pyrrolothiazoles chemo-, regio- and stereoselectively in quantitative yields. These compounds were screened for their in vitro activity against Mycobacterium tuberculosis H37Rv (MTB) and multi-drug resistant M. tuberculosis (MDR-TB) using agar dilution method. Among the synthesized compounds, spiro[5.3′′]-5′′-nitrooxindole-spiro-[6.3′]-1′-methyl-5′-(2,4-di-chlorophenylmethylidene)tetrahydro-4′(1H)-pyridinone-7-(2,4-dichlorophenyl)tetra-hydro-1H-pyrrolo[1,2-c][1,3]thiazole (9k) was found to be the most active with a minimum inhibitory concentration (MIC) of 0.6 μM against MTB and MDR-TB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号