首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase (MT) have been investigated at two temperatures of 20 and 30 degrees C in 10 mM phosphate buffer solution, pHs 5.3 and 6.8. The results show that benzenethiol can inhibit both activities of mushroom tyrosinase competitively. The inhibitory effect of benzenethiol on the cresolase activity is more than the catecholase activity of MT. The inhibition constant (K(i)) value at pH 5.3 is smaller than that at pH 6.8 for both enzyme activities. However, the K(i) value increases in cresolase activity and decreases in catecholase activity due to the increase of temperature from 20 to 30 degrees C at both pHs. Moreover, the effect of temperature on K(i) value is more at pH 6.8 for both cresolase and catecholase activities. The type of binding process is different in the two types of MT activities. The binding process for catecholase inhibition is only entropy driven, which means that the predominant interaction in the active site of the enzyme is hydrophobic, meanwhile the electrostatic interaction can be important for cresolase inhibition due to the enthalpy driven binding process. Fluorescence and circular studies also show a minor change in the tertiary structure, without any change in the secondary structure, of the enzyme due to the electrostatic interaction in cresolase inhibition by benzenethiol at acidic pH.  相似文献   

2.
Three new n-alkyl dithiocarbamate compounds, as sodium salts, C4H9NHCS2Na (I), C6H13NHCS2Na (II) and C8H17NHCS2Na (III), were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agaricus bisporus in 10 mM phosphate buffer pH 6.8, at 293K using UV spectrophotometry. Caffeic acid and p-coumaric acid were used as natural substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver–Burk plots showed different patterns of mixed and competitive inhibition for catecholase and cresolase reactions, respectively. These new synthetic compounds can be classified as potent inhibitors of MT due to Ki values of 0.8, 1.0 and 1.8 μM for cresolase inhibitory activity, and also 9.4, 14.5 and 28.1 μM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater potency in the inhibitory effect towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (α>1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds. The inhibition mechanism is presumably related to the chelating of the binuclear coppers at the active site and the different Ki values may be related to different interaction of the aliphatic chains of I, II and III with the hydrophobic pocket in the active site of the enzyme.  相似文献   

3.
Three iso-alkyldithiocarbonates (xanthates), as sodium salts, C3H7OCS2Na (I), C4H9OCS2Na (II) and C5H11OCS2Na (III), were synthesized, by the reaction between CS2 with the corresponding iso-alcohol in the presence of NaOH, and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agricus bisporus. 4-[(4-methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed and competitive inhibition for the three xanthates and also for cresolase and catecholase activities of MT. For cresolase activity, I and II showed a mixed inhibition pattern but III showed a competitive inhibition pattern. For catecholase activity, I showed mixed inhibition but II and III showed competitive inhibition. These new synthesized compounds are potent inhibitors of MT with Ki values of 9.8, 7.2 and 6.1 μM for cresolase inhibitory activity, and also 12.9, 21.8 and 42.2 μM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater inhibitory potency towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (α>1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds in both cresolase and catecholase activities. The cresolase inhibition is related to the chelating of the copper ions at the active site by a negative head group (S? ) of the anion xanthate, which leads to similar values of Ki for all three xanthates. Different Ki values for catecholase inhibition are related to different interactions of the aliphatic chains of I, II and III with hydrophobic pockets in the active site of the enzyme.  相似文献   

4.
Catecholase and cresolase activities of mushroom tyrosinase (MT) were studied in presence of some n-alkyl carboxylic acid derivatives. Catecholase activity of MT achieved its optimal activity in presence of 1.0, 1.25, 2.0, 2.2 and 3.2?mM of pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butanoic acid, and 2-oxo-octanoic acid, respectively. Contrarily, the cresolase activity of MT was inhibited by all type of the above acids. Propanoic acid caused an uncompetitive mode of inhibition (Ki=0.14?mM), however, the pyruvic, acrylic, 2-oxo-butanoic and 2-oxo-octanoic acids showed a competitive manner of inhibition with the inhibition constants (Ki) of 0.36, 0.6, 3.6 and 4.5?mM, respectively. So, it seems that, there is a physical difference in the docking of mono- and o-diphenols to the tyrosinase active site. This difference could be an essential determinant for the course of the catalytic cycle. Monophenols are proposed to bind only the oxyform of the tyrosinase. It is likely that the binding of acids occurs through their carboxylate group with one copper ion of the binuclear site. Thus, they could completely block the cresolase reaction, by preventing monophenol binding to the enzyme. From an allosteric point of view, n-alkyl acids may be involved in activation of MT catecholase reactions.  相似文献   

5.
Three new n-alkyl dithiocarbamate compounds, as sodium salts, C4H9NHCS2Na (I), C6H13NHCS2Na (II) and C8H17NHCS2Na (III), were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agaricus bisporus in 10 mM phosphate buffer pH 6.8, at 293K using UV spectrophotometry. Caffeic acid and p-coumaric acid were used as natural substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed and competitive inhibition for catecholase and cresolase reactions, respectively. These new synthetic compounds can be classified as potent inhibitors of MT due to Ki values of 0.8, 1.0 and 1.8 microM for cresolase inhibitory activity, and also 9.4, 14.5 and 28.1 microM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater potency in the inhibitory effect towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds. The inhibition mechanism is presumably related to the chelating of the binuclear coppers at the active site and the different Ki values may be related to different interaction of the aliphatic chains of I, II and III with the hydrophobic pocket in the active site of the enzyme.  相似文献   

6.
The inhibitory effect of ethylenediamine on both activities of mushroom tyrosinase (MT) at 20 °C in a 10 mM phosphate buffer solution (pH 6.8), was studied. L-DOPA and L-tyrosine were used as substrates of catecholase and cresolase activities, respectively. The results showed that ethylenediamine competitively inhibits both activities of the enzyme with inhibition constants (K(i)) of 0.18±0.05 and 0.14±0.01 μM for catecholase and cresolase respectively, which are lower than the reported values for other MT inhibitors. For further insight a docking study between tyrosinase and ethylenediamine was performed. The docking simulation showed that ethylenediamine binds in the active site of the enzyme near the Cu atoms and makes 3 hydrogen bonds with two histidine residues of active site.  相似文献   

7.
Sodium salts of four n-alkyl xanthate compounds, C2H5OCS2Na (I), C3H7OCS2Na (II), C4H9OCS2Na (III), and C6H13OCS2Na (IV) were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) in 10 mM sodium phosphate buffer, pH 6.8, at 293 K using UV spectrophotometry. 4-[(4-Methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed, competitive or uncompetitive inhibition for the four xanthates. For the cresolase activity, I and II showed uncompetitive inhibition but III and IV showed competitive inhibition pattern. For the catecholase activity, I and II showed mixed inhibition but III and IV showed competitive inhibition. The synthesized compounds can be classified as potent inhibitors of MT due to their Ki values of 13.8, 11, 8 and 5 microM for the cresolase activity, and 1.4, 5, 13 and 25 microM for the catecholase activity for I, II, III and IV, respectively. For the catecholase activity both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail of these compounds. The length of the hydrophobic tail of the xanthates has a stronger effect on the Ki values for catecholase inhibition than for cresolase inhibition. Increasing the length of the hydrophobic tail leads to a decrease of the Ki values for cresolase inhibition and an increase of the Ki values for catecholase inhibition.  相似文献   

8.
Three iso-alkyldithiocarbonates (xanthates), as sodium salts, C3H7OCS2Na (I), C4H9OCS2Na (II) and C5H11OCS2Na (III), were synthesized, by the reaction between CS2 with the corresponding iso-alcohol in the presence of NaOH, and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agricus bisporus. 4-[(4-methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed and competitive inhibition for the three xanthates and also for cresolase and catecholase activities of MT. For cresolase activity, I and II showed a mixed inhibition pattern but III showed a competitive inhibition pattern. For catecholase activity, I showed mixed inhibition but II and III showed competitive inhibition. These new synthesized compounds are potent inhibitors of MT with K(i) values of 9.8, 7.2 and 6.1 microM for cresolase inhibitory activity, and also 12.9, 21.8 and 42.2 microM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater inhibitory potency towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds in both cresolase and catecholase activities. The cresolase inhibition is related to the chelating of the copper ions at the active site by a negative head group (S-) of the anion xanthate, which leads to similar values of K(i) for all three xanthates. Different K(i) values for catecholase inhibition are related to different interactions of the aliphatic chains of I, II and III with hydrophobic pockets in the active site of the enzyme.  相似文献   

9.
A novel monofunctional benzyldithiocarbamate, C6H5CH2NHCSSNa (I), and a bifunctional p-xylidine-bis(dithiocarbamate), NaSSCNHCH2C6H4CH2NHCSSNa (II), as sodium salts, were synthesized by reaction between p-xylylenediamine or benzylamine with CS2 in the presence of NaOH. They were characterized by spectroscopic techniques such as 1H NMR, IR, and elemental analysis. These water-soluble compounds were examined for their inhibition of both activities of mushroom tyrosinase (MT) from a commercial source of Agricus bisporus. l-3,4- Dihydroxyphenylalanine (L-DOPA) and l-tyrosine were used as natural substrates for the catecholase and cresolase enzyme reactions, respectively. Kinetic studies showed noncompetitive inhibition of I and mixed type inhibition of II on both activities of MT. The inhibition constant (KI) of II was smaller than that of I. Raising the temperature from 27 to 37°C caused a decrease in KI values of I and an increase in values of II. The binding process for inhibition of I was only entropy driven, which means that the predominant interaction in the active site of the enzyme is hydrophobic; meanwhile, the electrostatic interaction can be important for the inhibition of II due to the enthalpy driven binding process. Fluorescence studies showed a decrease of emission intensity without a shift of emission maximum in the presence of different concentrations of compounds. An extrinsic fluorescence study did not show any considerable change of the tertiary structure of MT. Probably, the conformation of inhibitor-bound MT is stable and inflexible compared with uninhibited MT.  相似文献   

10.
Citrate stimulates cresolase activity of tyrosinase from B-16 murine melanoma and human skin. Maximal stimulation by citrate was obtained at 2 mM, and stimulation was decreased at higher concentrations. Citrate stimulates tyrosinase not only from mammalian sources but also from mushroom. The stimulation was not due to reversal of inhibition of enzyme activity by excess tyrosine. On rapid decrease in pH of the enzyme solution from 6.8 to 5.0-5.2, the enzyme is no longer inhibited by excess tyrosine even when its activity was assayed at pH 6.8. Citrate also stimulates this form of enzyme. However, the stimulation is more at acidic pH than at pH 6.8. At higher concentrations of citrate the stimulatory effect decreases at both pH 5.0 and pH 6.8. Inhibition of this enzyme occurs at higher concentrations (22 mM) at pH 6.8. The physiological role of stimulation of cresolase activity of tyrosinase by citrate is yet to be unravelled.  相似文献   

11.
The lag in cresolase activity and inhibition by excess tyrosine of mushroom tyrosinase which was observed when assayed at pH 6.8 was found to be absent when assayed at pH 5.0. The absence of lag and inhibition by excess tyrosine of tyrosinase at pH 5.0 were brought about only after the enzyme was kept at pH 5.0, at 0-4 degrees C, for 1.5 h. The enzyme kept at pH 5.0 for 1.5-3 h at 0-4 degrees C when brought back to pH 6.8, acquires lag and inhibition by excess tyrosine when its activity was measured at pH 6.8. The pH-dependent changes in the kinetic properties of the mushroom tyrosinase are similar to the pH-dependent changes in the kinetic properties of tyrosinase from B-16 murine melanoma and human skin, and thus appear to be a general property of tyrosinase from diverse sources.  相似文献   

12.
To address the real cause of the suicide inactivation of mushroom tyrosinase (MT), under in vitro conditions, cresolase and catecholase reactions of this enzyme were investigated in the presence of three different pairs of substrates, which had been selected for their structural specifications. It was showed that the cresolase activity is more vulnerable to the inactivation. Acetylation of the free tyrosyl residues of MT did not cure susceptibility of the cresolase activity, but clearly decreased the inactivation rate of MT in the presence of 4-[(4-methylbenzo)azo]-1,2-benzenediol (MeBACat) as a catecholase substrate. Considering the results of the previous works and this research, some different possible reasons for the suicide inactivation of MT have been discussed. Accordingly, it was proposed that the interruption in the conformational changes in the tertiary and quaternary structures of MT, triggered by the substrate then mediated by the solvent molecules, might be the real reason for the suicide inactivation of the enzyme. However, minor causes like the toxic effect of the ortho-quinones on the protein body of the enzyme or the oxidation of some free tyrosyl residues on the surface of the enzyme by itself, which could boost the inactivation rate, should not be ignored.  相似文献   

13.
The inhibition of mushroom tyrosinase by azide is examined as a function of the concentrations of l-tyrosine, l-3,4-dihydroxyphenylalanine (l-Dopa), and oxygen at pH 5.6 and 7.0. Mixed inhibition is observed with respect to l-tyrosine, l-Dopa, and oxygen. The data are interpreted in terms of azide combining with both the oxidized and reduced forms of the enzyme. A scheme is presented for the catecholase and cresolase reactions which explains the results of azide inhibition and also the effect of other inhibitors which complex with the copper of tyrosinase. Double-reciprocal plots of oxygen variation with l-tyrosine as the fixed substrate are nonlinear above about 500 μm oxygen. When l-Dopa is the fixed substrate, no curvature is observed. These results could be explained in terms of negative cooperativity or the presence of two kinetically distinct enzyme forms having different Km values for oxygen. Although the kinetic data do not permit a choice between the two possibilities, the occurrence in all tyrosinase preparations of two forms, resting, bicupric enzyme and “intrinsic oxytyrosinase,” lends support to the latter suggestion.  相似文献   

14.
Spinach chloroplast phenolase was inhibited by oxalic acid and its salts. Complete inhibitions were induced instantly in the acidic region (e.g. by 1 and 5 mM oxalate at pH 5 and 5.5, respectively), and in the neutral region pre-incubation of the enzyme with oxalates could also lead to complete loss of activity. The inhibition mode was non-competitive for phenol substrate with Ki of 0.9 mM pH 6.8. Reduction of enzyme activity in a crude extract of chloroplasts induced by freezing at neutral pH was due to the presence of ammonium oxalate. With 0.5 mM oxalate, the inhibition attained 75% under frozen conditions, whilst no inhibition could be detected in the enzyme which had not been frozen. Free oxalic acid and K+ and Na+ salts also caused freezing inhibition. Glyoxylic and oxamic acids acted as inhibitors with less efficiency. With a pure mushroom tyrosinase (phenolase), essentially the identical results were obtained using the same conditions.  相似文献   

15.
Alterations in the synthesis of melanin contribute to a number of diseases; therefore, the design of new tyrosinase inhibitors is very important. Mushroom tyrosinase (MT) is a metalloenzyme, which plays an important role in melanin biosynthesis. In this study, the inhibitory effect of a novel designed compound, i.e. 2-((1Z)-(2-(2,4-dinitrophenyl)hydrazin-1-ylidene)methyl)phenol, as a specific ligand which can bind to the copper ion of MT, has been assessed. The ligand was found to competitively inhibit both the cresolase and catecholase activities of MT, with small inhibition constants of 2.8 and 2.6?μM, respectively. Intrinsic fluorescence studies were performed to gain more information on the binding constants. Docking results indicated that the ligand binds to copper ions in the active site of MT via the OH group of the ligand. The ligand makes four hydrogen bonds with aspartic acid and one hydrogen bond with the histidine residue in the active site. Molecular dynamics results show that ligand binds to the MT via both electrostatic and hydrophobic interactions with its different parts.  相似文献   

16.
Several synthetic N-substituted N-nitrosohydroxylamines were found to inhibit mushroom tyrosinase in a pH-dependent manner regardless of the N-substituent. The inhibitory activity, or pI50 ( ? log [IC50, M]) value, linearly decreased as the pH of the media increased. The inhibitory activities of tested N-substituted N-nitrosohydroxylamines at pH 6.8 and 5.8 were found to be almost 10 times and 100 times greater than at pH 7.8, respectively. The types of inhibition were different at pH 6.8 and 5.8. These results suggest that the inhibitory effect of N-substituted N-nitrosohydroxylamines is caused by the non-ionized form of the inhibitor. Furthermore, the mechanism of inhibition depends on the interaction between the inhibitor and the active site of tyrosinase at different pH values.  相似文献   

17.
The effect of 4 flavonoids on the diphenolase activity of mushroom tyrosinase was studied using spectroscopic approach. Analysis of kinetic data demonstrated that flavonoids cause a reversible inhibition of the enzyme activity. Further study showed that gallic acid acted as noncompetitive inhibitor, whereas chrysin, naringin and quercetin inhibited the diphenolase activity of mushroom tyrosinase in a competitive fashion. Comparison of the inhibition constants revealed that the strength with which the inhibitors acted on the enzyme activity was ranking as follows: chrysin (Ki 7.90 mM) < quercetin (Ki 7.44 mM) < naringin (Ki 3.04 mM) < gallic acid (Ki 1.5 mM). These data, therefore, suggest that gallic acid is the most potent inhibitor of the enzyme compared to the other flavonoids used.  相似文献   

18.
A study has been made of the kinetics of cresolase and catecholase activities of tyrosinase on the p-cresol/4-methyl-catechol pair in the presence of L-serine. For this, a spectrophotometer assay for both activities based on the spectrophotometric and stoichiometric characteristics of the chemical reactions in the evolution of 4-methyl-o-benzoquinone is proposed. The presence of L-serine in the reaction medium caused a modification in the lag period and the steady-state rate expressed during the cresolase activity of tyrosinase, but no modification was observed during the expression of catecholase activity. These results can be explained taking into account the complex mechanism proposed for tyrosinase which included the chemical steps involved in the process. Furthermore, a singular form of regulation of enzymatic activity by L-serine has been clarified, not by any direct interaction between the protein molecule and the nucleophile, but by modification of the chemical reactions involved in the mechanism of tyrosinase.  相似文献   

19.
Two new bi-pyridine compounds, [1,4'] Bipiperidinyl-1'-yl-naphthan-2-yl-methanone (I) and [1,4'] Bipiperidinyl-1'-yl-4-methylphenyl-methane (II) were synthesized and examined for inhibition of the catecholase activity of mushroom tyrosinase in 10 mM phosphate buffer pH 6.8, at 293 K using UV spectrophotometry. Inhibition kinetics indicated that they were uncompetitive inhibitors and the value of the inhibition constants were 5.87 and 1.31 microM for I and II, respectively, which showed high potency. Fluorescent studies confirmed the uncompetitive type of inhibition for these two inhibitors. The inhibition mechanism presumably comes from the presence of a particular hydrophobe site which can accommodate these inhibitors. This site could be formed due to a probable conformational change that was induced by binding of substrate with the enzyme.  相似文献   

20.
Tiliroside was found to inhibit both monophenolase and diphenolase activity of mushroom tyrosinase. The lag time of tyrosine oxidation catalyzed by mushroom tyrosinase was obviously lengthened; 0.337?mM of tiliroside resulted in the lag time extension from 46.7?s to 435.1?s. A kinetic analysis shown that tiliroside was a competitive inhibitor for monophenolase and diphenolase with Ki values of 0.052?mM and 0.26?mM, respectively. Furthermore, tiliroside showed 34.5% (p?<?0.05) inhibition of intracellular tyrosinase activity and 54.1% (p?<?0.05) inhibition of melanin production with low cytotoxicity on B16 mouse melanoma cells at 0.168?mM. In contrast, arbutin displayed 9.1% inhibition of cellular tyrosinase activity and 29.5% inhibition of melanin production at the same concentration. These results suggested that tiliroside was a potent tyrosinase inhibitor and might be used as a skin-whitening agent and pigmentation medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号