首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Triazole derived Schiff bases and their metal complexes (cobalt(II), copper(II), nickel(II), and zinc(II)) have been prepared and characterized using IR, 1H and 13C NMR, mass spectrometry, magnetic susceptibility and conductivity measurements, and CHN analysis data. The structure of L2, N-[(5-methylthiophen-2-yl)methylidene]-1H-1,2,4-triazol-3-amine, has also been determined by the X-ray diffraction method. All the metal(II) complexes showed octahedral geometry except the copper(II) complexes, which showed distorted octahedral geometry. The triazole ligands and their metal complexes have been screened for their in vitro antibacterial, antifungal, and cytotoxic activity. All the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. It is revealed that all the synthesized complexes showed better activity than the ligands, due to coordination.  相似文献   

2.
Some isatin derived sulfonamides and their transition metal [Co(II), Cu(II), Ni(II), Zn(II)] complexes have been synthesized and characterized. The structure of synthesized compounds and their nature of bonding have been inferred on the basis of their physical (magnetic susceptibility and conductivity measurements), analytical (elemental analyses) and spectral (IR, 1H NMR and 13C NMR) properties. An octahedral geometry has been suggested for Co(II), Ni(II) and Zn(II) and square-planar for Cu(II) complexes. In order to assess the antibacterial and antifungal behavior, the ligands and their metal(II) complexes were screened for their in vitro antibacterial activity against four Gram-negative species, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi and two Gram-positive species, Staphylococcus aureus and Bacillus subtilis and, for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. In vitro cytotoxic properties of all the compounds were also studied against Artemia salina by brine shrimp bioassay. The results of average antibacterial/antifungal activity showed that zinc(II) complexes were found to be the most active against one or more bacterial/fungal strains as compared to the other metal complexes.  相似文献   

3.
Cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes with 5-chlorosalicyladehyde derived Schiff base sulfonamides have been synthesized and characterized. Structure and bonding nature of all the synthesized compounds have been deduced from physical, analytical, and spectral (IR, 1H NMR, 13C NMR, Mass, electronic) data. An octahedral geometry has been proposed for all the metal complexes. The ligands and their metal complexes have been screened for their in vitro antibacterial, antifungal, and cytotoxic properties and results are reported.  相似文献   

4.
2-Hydroxy-1-naphthaldehyde derived sulfonamides and their first row d-transition metal chelates [cobalt (II), copper (II), nickel (II) and zinc (II)] have been synthesized and characterized. The nature of bonding and structure of all the compounds have been deduced from elemental analyses, infrared, 1H NMR, 13C NMR, mass spectrometry, electronic spectra, magnetic susceptibility and conductivity measurements. An octahedral geometry has been suggested for all the complexes. The metal complexes were screened for their antibacterial and antifungal activities on different species of pathogenic bacteria and fungi and their biopotency has been discussed. The results of these studies revealed that all compounds showed moderate to significant antibacterial activity against all bacterial strains and good antifungal activity against various fungal strains. In-vitro cytotoxic properties of all the compounds against Artemia salina was also studies by brine shrimp bioassay.  相似文献   

5.
A new series of antibacterial and antifungal triazine-derived mono- and di-substituted (symmetrical and unsymmetrical) Schiff-bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments and IR and electronic spectral measurements. IR spectra indicated the ligands to act as tridentate towards divalent metal ions via a trazine-N, the azomethine-N and, indole-NH and deprotonated-O of salicylaldehyde. The magnetic moments and electronic spectral data suggest octahedral geometry for the Co(II), Ni(II) and Zn(II)complexes and square-pyramid for Cu(II) complexes. NMR spectral data of the ligands and their diamagnetic zinc(II) complexes well-define their proposed structures/geometries. Elemental analyses data of the ligands and metal complexes agree with their proposed structures/geometries. The synthesized ligands, along with their metal complexes were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/antifungal against two or more species as compared to the uncomplexed Schiff-base ligands.  相似文献   

6.
Organometallic-based, 1,1′-diacetylferrocene-derived antibacterial and antifungal thiocarbohydrazone, carbohydrazone, thiosemicarbazone and semicarbazone have been prepared by condensing equimolar amount of 1,1′-diacetylferrocene with thiocarbohydrazide, carbohydrazide thiosemicarbazide and semicarbazide, respectively. These were used as ligands for the preparation of their cobalt (II), copper (II), nickel (II) and zinc (II) metal complexes. All the synthesized ligands and their complexes were characterized by IR, NMR, elemental analyses, molar conductances, magnetic moments and electronic spectral data. These synthesized compounds were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi, and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using the agar-well diffusion method. All the compounds showed good antibacterial and antifungal activity which increased on coordination with the metal ions thus, introducing a novel class of organometallic-based antibacterial and antifungal agents.  相似文献   

7.
A new series of four biologically active triazole derived Schiff base ligands (L1L4) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (116) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.  相似文献   

8.
Cobalt (II), copper (II), nickel (II) and zinc (II) complexes with 2-hydroxy-1-naphthaldehyde derived N-substituted sulfonamides have been synthesized and the nature of bonding and structure of compounds have been deduced from physical, analytical and spectral (IR, (1)H NMR, (13)C NMR, Mass and electronic) data. An octahedral geometry has been suggested for the complexes. Complexes along with the ligands were assessed for their antibacterial and antifungal activities on different species of pathogenic bacteria and fungi. The results revealed the ligands to possess moderate to significant antibacterial activity which was, in many cases, enhanced on chelation. Similar results were observed for antifungal activity. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina.  相似文献   

9.
Abstract

A series of three bioactive thiourea (carboxamide) derivatives, N-(dipropylcarbamothioyl)-thiophene-2-carboxamide (L1), N-(dipropylcarbamothioyl)-5-methylthiophene-2-carboxamide (L2) and 5-bromo-N-(dipropylcarbamothioyl)furan-2-carboxamide (L3) and their cobalt(II), copper(II), nickel(II) and zinc(II) complexes (1)–(12) have been synthesized and characterized by their IR,1H-NMR spectroscopy, mass spectrometry and elemental analysis data. The Crystal structure of one of the ligand, N-(dipropylcarbamothioyl)thiophene-2-carboxamide (L1) and its nickel(II) and copper(II) complexes were determined from single crystal X-ray diffraction data. All the ligands and metal(II) complexes have been subjected to in vitro antibacterial and antifungal activity against six bacterial species (Escherichia coli. Shigella flexneri. Pseudomonas aeruginosa. Salmonella typhi. Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal strains (Trichophyton longifusus. Candida albicans. Aspergillus flavus. Microsporum canis. Fusarium solani and Candida glabrata). The in vitro antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent than the parent ligands against one or more bacterial and fungal strains.  相似文献   

10.
The present paper describes the synthesis, characterization and in vitro biological evaluation screening of different classes (ammoniacates, dioximates, carboxylates, semi- and thiosemicarbazidates) of Co(II), Co(III), Cu(II), Ni(II), Mn(II), Zn(II) and Fe(III) complexes. Schiff bases were obtained from the reaction of some salicyl aldehydes with, respectively, furoylhydrazine, benzoylhydrazine, semicarbazide, thiosemicarbazide and S-methylthiosemicarbazide to give tridentate ligands containing ONO, ONS or ONN as donor atoms. The synthetic metal complexes are of various geometrical and electronic structures, thermodynamic and thermal stabilities, and magnetic and conductance properties. All complexes, except those of Cu, are octahedral. Some Cu, Co and Mn compounds have a dimeric or a polymeric structure. The composition and structure of complexes were analysed by elemental analysis, IR and 1H NMR and 13C NMR spectroscopies, and magnetochemical, thermoanalytical and molar conductance measurements. All ligands and metal complexes were tested as inhibitors of human leukemia (HL-60) cells growth, and the most potent, the Cu(II) complexes, have been also tested for their in vitro antibacterial and antifungal activities. Structure-activity relationships were carried out.  相似文献   

11.
A new series of asymmetric salicyl-, furanyl-, thienyl- and pyrrolyl-derived ONNO, NNNO, ONNS & NNNS donor antibacterial and antifungal Schiff-bases and their copper(II) and zinc(II) metal complexes have been synthesized and characterized. IR spectra indicated the ligands to act as quartdentate towards divalent metal ions via two azomethine-N, deprotonated-O of salicyl, furanyl-O, thienyl-S and/or pyrrolyl-N. The magnetic moments and electronic spectral data suggest octahedral geometry for Cu(II) and Zn(II) complexes. NMR spectral data of the ligands and their diamagnetic zinc(II) complexes well-define their proposed structures/geometries. Elemental analyses data of the ligands and metal complexes agree with their proposed structures/geometries. The synthesized ligands, along with their metal complexes were screened for their antibacterial activity against B. cereus, C. diphtheriae, E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, S. typhi, S. dysenteriae and S. aureus strains and for in-vitro antifungal activity against T. schoenleinii, C. glabrata, P. boydii, C. albicans, A. niger, M. canis and T. mentagrophytes. The results of these studies show the metal complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. Eight compounds, L4, (1), (7), (8), (11), (17), (19) and (23) displayed potent cytotoxic activity with LD50 = 1.445 × 10? 3, 1.021 × 10? 3, 7.478 × 10? 4, 8.566 × 10? 4, 1.028 × 10? 3, 9.943 × 10? 4, 8.730 × 10? 4 and 1.124 × 10? 3 M respectively, against Artemia salina.  相似文献   

12.
Some antibacterial and antifungal furanylmethyl-and thienylmethyl dithiolenes and, their Co(II), Cu(II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative; Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexeneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureus bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. All compounds showed significant antibacterial and antifungal activity. The metal complexes, however, were shown to possess better activity as compared to the simple ligands. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties.  相似文献   

13.
A new series of compounds derived from thiophene-2-carboxamide were synthesized and characterized by IR, 1H-NMR and 13C-NMR, mass spectrometry and elemental analysis. These compounds were further used to prepare their Co(II), Ni(II), Cu(II) and Zn(II) metal complexes. All metal(II) complexes were air and moisture stable. Physical, spectral and analytical data have shown the Ni(II) and Cu(II) complexes to exhibit distorted square-planar and Co(II) and Zn(II) complexes tetrahedral geometries. The ligand (L1) and its Cu(II) complex were characterized by the single-crystal X-ray diffraction method. All the ligands and their metal(II) complexes were screened for their in-vitro antimicrobial activity. The antibacterial and antifungal bioactivity data showed that the metal(II) complexes were found to be more potent than the parent ligands against one or more bacterial and fungal strains.  相似文献   

14.
Schiff bases have been synthesized by the reaction of p-nitrobenzaldehyde, o-nitrobenzaldehyde and p-toluyaldehyde with 4-amino-5-mercapto-1,2,4-triazole. The ligands react with Co(II), Ni(II) and Zn(II) metals to yield (1:1) and (1:2) [metal:ligand] complexes. Elemental analyses, IR, 1H NMR, electronic spectral data, magnetic susceptibility measurements, molar conductivity measurements and thermal studies have investigated the structure of the ligands and their metal complexes. The electronic spectral data suggests octahedral geometry for Co(II), Ni(II) and Zn(II). The antibacterial activities of the ligands and their metal complexes have been screened in vitro against three Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and two Gram-negative (Salmonella typhi and Pseudomonas aeruginosa) organisms. The coordination of the metal ion had a pronounced effect on the microbial activities of the ligands and the metal complexes have higher antimicrobial effect than the free ligands.  相似文献   

15.
Some isatin derived sulfonamides and their transition metal [Co(II), Cu(II), Ni(II), Zn(II)] complexes have been synthesized and characterized. The structure of synthesized compounds and their nature of bonding have been inferred on the basis of their physical (magnetic susceptibility and conductivity measurements), analytical (elemental analyses) and spectral (IR, (1)H NMR and (13)C NMR) properties. An octahedral geometry has been suggested for Co(II), Ni(II) and Zn(II) and square-planar for Cu(II) complexes. In order to assess the antibacterial and antifungal behavior, the ligands and their metal(II) complexes were screened for their in vitro antibacterial activity against four Gram-negative species, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi and two Gram-positive species, Staphylococcus aureus and Bacillus subtilis and, for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. In vitro cytotoxic properties of all the compounds were also studied against Artemia salina by brine shrimp bioassay. The results of average antibacterial/antifungal activity showed that zinc(II) complexes were found to be the most active against one or more bacterial/fungal strains as compared to the other metal complexes.  相似文献   

16.
A new series of Schiff base ligands derived from sulfonamide and their metal(II) complexes [cobalt(II), copper(II), nickel(II) and zinc(II)] have been synthesized and characterized. The nature of bonding and structure of all the synthesized compounds has been explored by physical, analytical and spectral data of the ligands and their metal(II) complexes. The authors suggest that all the prepared complexes possess an octahedral geometry. The ligands and metal(II) complexes have been screened for their in vitro antibacterial activity against bacterial strains, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi and for antifungal activity against fungal strains, Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. These assays enabled the identification of the metal complexes as an effective antimicrobial agent with low cytotoxicity.  相似文献   

17.
Three new ligands and their palladium(II) complexes of general formula [PdCl2(R2-S,S-eddp)] (R = n-propyl, n-butyl and n-pentyl) have been synthesized and characterized by microanalysis, infrared and 1H and 13C NMR spectroscopy. Antimicrobial activity of these ligands and complexes was tested by microdilution method and both minimal inhibitory and microbicidal concentration were determined. These tested complexes demonstrated the significant antifungal activity against pathogenic fungi Aspergillus flavus and Aspergillus fumigatus. On the other hand, these complexes demonstrated moderate antibacterial activity.  相似文献   

18.
Abstract

Metal-based ethanolamines, (L1)–(L4) coordinated with Co(II), Cu(II), Ni(II) and Zn(II) metals in 1:2 (metal:ligand) molar ratio to produce new compounds have been reported. These compounds were screened for their bactericidal/fungicidal activity against a number of bacterial (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus and Bacillus subtilis) and fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) alongside against a shrimp species known as Artemia salina. The screening results indicated that metal complexes have significantly higher activity than uncomplexed ligands against one or more bacterial/fungal species due to chelation. The ligand (L4) displayed good bacterial and fungal activity as compared to other ligands. The antibacterial results revealed that the Zn(II) complex (16) of (L4) was found to be the most active complex and Co(II) complex (14) of the same ligand (L4), demonstrated the highest antifungal activity.  相似文献   

19.
Organometallic-based, 1,1'-diacetylferrocene-derived antibacterial and antifungal thiocarbohydrazone, carbohydrazone, thiosemicarbazone and semicarbazone have been prepared by condensing equimolar amount of 1,1'-diacetylferrocene with thiocarbohydrazide, carbohydrazide thiosemicarbazide and semicarbazide, respectively. These were used as ligands for the preparation of their cobalt (II), copper (II), nickel (II) and zinc (II) metal complexes. All the synthesized ligands and their complexes were characterized by IR, NMR, elemental analyses, molar conductances, magnetic moments and electronic spectral data. These synthesized compounds were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi, and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using the agar-well diffusion method. All the compounds showed good antibacterial and antifungal activity which increased on coordination with the metal ions thus, introducing a novel class of organometallic-based antibacterial and antifungal agents.  相似文献   

20.
A new series of antibacterial and antifungal triazine-derived mono- and di-substituted (symmetrical and unsymmetrical) Schiff-bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments and IR and electronic spectral measurements. IR spectra indicated the ligands to act as tridentate towards divalent metal ions via a trazine-N, the azomethine-N and, indole-NH and deprotonated-O of salicylaldehyde. The magnetic moments and electronic spectral data suggest octahedral geometry for the Co(II), Ni(II) and Zn(II)complexes and square-pyramid for Cu(II) complexes. NMR spectral data of the ligands and their diamagnetic zinc(II) complexes well-define their proposed structures/geometries. Elemental analyses data of the ligands and metal complexes agree with their proposed structures/geometries. The synthesized ligands, along with their metal complexes were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/ antifungal against two or more species as compared to the uncomplexed Schiff-base ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号