首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With a view to specifying structure-activity relationships we have synthesised a new series of analogues of the Rho-kinase inhibitor 1-(5-isoquinolinesulfonyl)-homopiperazine (Fasudil). The structural modifications concerned the isoquinolinyl heterocycle and the sulfonyl group which are the two main features of this lead compound. These analogues were evaluated on the actin cytoskeleton and on the enzymatic activity of Rho-kinase. Most of the chemical modifications result in a loss of activity showing that interactions of Fasudil with the catalytic domain of Rho-kinase seem to be particularly definite and sensitive to structural variations. The presence of an isoquinolinyl nitrogen and a basic amino group separated by a spacer bearing a sulfonamide function are of utmost importance. Only the tetra-hydroisoquinoline analogue 3 shows the same activity as Fasudil. Moreover, this compound is unable to inhibit PKC biological activity contrary to Fasudil. The loss of the aromatic property could increase the selectivity level in favour of compound 3.  相似文献   

2.
In order to specify structure-activity relationships we have synthesized new series of analogues of the Rho-kinase inhibitor (R)?(+)? N ?(4-pyridyl)-4-(1-aminoethyl)benzamide (Y-32885). The structural modifications concerned the 1-aminoethyl, the pyridyl and the amide groups which are the main features of this lead compound. Our analogue derivatives were evaluated on GTP γS-induced contraction in permeabilized smooth-muscle and on the actin cytoskeleton. All the modifications result in a diminution or a loss of activity showing that interactions of Y-32885 with the catalytic domain of Rho-kinase seem to be particularly definite and sensitive to structural variations. The presence of a pyridine moiety and a basic amine group separated by a spacer bearing an amide function are of utmost importance.  相似文献   

3.
In order to specify structure-activity relationships we have synthesized new series of analogues of the Rho-kinase inhibitor (R)-(+)-N-(4-pyridyl)-4-(1-aminoethyl)benzamide (Y-32885). The structural modifications concerned the 1-aminoethyl, the pyridyl and the amide groups which are the main features of this lead compound. Our analogue derivatives were evaluated on GTPgammaS-induced contraction in permeabilized smooth-muscle and on the actin cytoskeleton. All the modifications result in a diminution or a loss of activity showing that interactions of Y-32885 with the catalytic domain of Rho-kinase seem to be particularly definite and sensitive to structural variations. The presence of a pyridine moiety and a basic amine group separated by a spacer bearing an amide function are of utmost importance.  相似文献   

4.
Synthesis and evaluation of new combretastatin analogues with varied modifications on the bridge and the aromatic rings, have shown that the 2-naphthyl moiety is a good surrogate for the 3-hydroxy-4-methoxyphenyl (B-ring) of combretastatin A-4. Other bicyclic systems, such as 6(7)-quinolyl and 5-indolyl, can replace the B-ring, but they produce less potent analogues in the cytotoxicity and tubulin polymerization inhibition assays. Other modifications are detrimentral for the potency of the studied analogues. The 2-naphthyl combretastatin 53 and the related 6-quinolyl combretastatin 106 analogues are the most potent among the derivatives of this type, whereas 92 and 95 are the most potent among the naphthalene derivatives with a heterocycle in the bridge. Previous and new results in this family of combretastatin analogues are discussed.  相似文献   

5.
Here, we describe the first example of a cell-based myosin light chain phosphorylation assay in 96-well format that allows for the rapid screening of novel Rho-kinase inhibitors. We obtained IC50 values for the prototypic Rho-kinase inhibitors Y-27632 (1.2 ± 0.05 μM) and Fasudil (3.7 ± 1.2 μM) that were similar to those previously published utilizing electrophoresis-based methodologies. H-1152P, a Fasudil analog showed an IC50 value of 77 ± 30 nM. Data derived from a set of 21 novel Rho-kinase inhibitors correlate with those generated by a well-established cell-based phenotypic Rho-kinase inhibition assay (R2 = 0.744). These results show that imaging technology measuring changes in myosin light chain phosphorylation can be used to rapidly generate quantitative IC50 values and to screen a larger set of small molecule Rho-kinase inhibitors and suggests that this approach can be broadly applied to other cell lines and signaling pathways.  相似文献   

6.
The structural modifications of pregnenolone have been described via the introduction of heterocyclic moieties at C-17 position by limiting the acyl group. Novel heterocyclic analogues of pregnenolone have been synthesized by using Friedlander and Claisen-Schmidt reactions, and the synthesized compounds were evaluated for their osteogenic activity. Among the synthesized derivatives, four compounds showed significantly increased ALP activity. Among all four active compounds, the novel compound 3a has shown significant bone matrix mineralization and mRNA expressions of osteogenic marker genes, BMP2, RUNX-2 and OCN at 1 pM concentration.  相似文献   

7.
Recent studies revealed that MALT1 is a promising therapeutic target for the treatment of ABC-DLBCL. Among several reported MALT1 inhibitors, MI-2 as an irreversible inhibitor represents a new class of ABC-DLBCL therapeutics. Due to its inherent potential cross-reactivity, further structure–activity relationship (SAR) study is imperative. In this work, five focused compound libraries based on the chemical structure of MI-2 are designed and synthesized. The systematic SARs revealed that the side chain of 2-methoxyethoxy has little impact on the activity and can be replaced by other functionalized groups, providing new MI-2 analogues with retained or enhanced potency. Compounds 8183 with terminal hydroxyl group as side chain displayed enhanced activities against MALT1. Replacement of triazole core with pyrazole is also tolerant, while structural modifications on other sites are detrimental. These findings will facilitate further development of small-molecule MALT1 inhibitors.  相似文献   

8.
Two series of new analogues were designed by replacing the quinoline scaffold of our earlier lead 2 (zgwatinib) with quinoxaline and pyrido[2,3-d]pyrimidine frameworks. Moderate c-Met inhibitory activity was observed in the quinoxaline series. Among the pyrido[2,3-d]pyrimidine series, compounds 13ac possessing an O-linkage were inactive, whilst the N-linked analogues 15ac retained c-Met inhibitory potency. Highest activity was observed in the 3-nitrobenzyl analog 15b that showed an IC50 value of 6.5 nM. Further structural modifications based on this compound were undergoing.  相似文献   

9.
This paper presents the results of synthesis and study of cytotoxicity and the anti-adenoviral activity of new N4-derivatives of 6-azacytidine and its α-L-glycopyranosyl analogues obtained by the simplified one-pot version of the silyl condensation method. The resulting acylated 4-methylmercapto-1,2,4-triazin-3(2Н)-one glycosides then underwent the amination and/or ammonolysis to provide 6-azacytidine glycoside analogues (2–6, 12, 15, 17) and compounds with modifications at both base and sugar fragments (11, 15). The evaluation of cytotoxicity and antiviral activity of new compounds against AdV5 showed high selectivity indexes for N4-methyl-6-azacytidine (2) and N,O-tetraacetyl-6-azacytidine (8). High anti-adenoviral activity of N4-methyl-6-azacytidine as well as very low cytotoxicity may suggest its further investigation as potential compound for the therapy of AdV infection.  相似文献   

10.
Evidence is accumulating that Rho-associated kinase (Rho-kinase) plays important roles not only in vascular smooth muscle cell contraction, but also in a variety of cellular functions, including bone metabolism. In the present study, we investigated the involvement of Rho-kinase in the osteocalcin synthesis induced by triiodothyronine (T3) in osteoblast-like MC3T3-E1 cells. T3 time-dependently induced phosphorylation of myosin phosphatase targeting subunit (MYPT-1), a substrate of Rho-kinase. Y27632, a specific inhibitor of Rho-kinase, attenuated the MYPT-1 phosphorylation induced by T3. T3-stimulated osteocalcin release was significantly enhanced by Y27632. Fasudil, another Rho-kinase inhibitor, amplified the osteocalcin release induced by T3. T3-stimulated osteocalcin release was significantly augmented in Rho-knockdown cells with Rho A-siRNA. Y27632 and fasudil also increased the mRNA expression level of osteocalcin induced by T3. These results strongly suggest that T3 stimulates the activation of Rho-kinase in osteoblasts, which functions as a negative regulator of T3-stimulated osteocalcin synthesis.  相似文献   

11.
Abstract

Analogues of S-adenosylmethionine with modifications in the 5′-group were prepared as potential inhibitors of S-adenosylmethionine decarboxylase (AdoMet-DC). These new analogues contained carbonyl-reactive end groups in the 5′-side chain, designed to interact favorably with the pyruvate prosthetic group of AdoMet-DC. Several of the analogues proved to be outstanding inhibitors of the enzyme. The analogues were also evaluated for their activity against human cytomegalovirus in vitro.  相似文献   

12.
Starting from the molecular simplification of (R) 4-(3,4-dibenzylpiperazine-1-carbonyl)benzenesulfonamide 9a, a compound endowed with selectivity for human Carbonic Anhydrase (hCA) IV, a series of piperazines and 4-aminopiperidines carrying a 4-sulfamoylbenzamide moiety as Zn-binding group have been designed and tested on human isoforms hCA I, II, IV and IX, using a stopped flow CO2 hydrase assay. The aim of the work was to derive structure-activity relationships useful for designing isoform selective compounds. These structural modifications changed the selectivity profile of the analogues from hCA IV to hCA I and II, and improved potency. Several of the new compounds showed subnanomolar activity on hCA II. X-ray crystallography of ligand-hCAII complexes was used to compare the binding modes of the new piperazines and the previously synthesized 2-benzyl-piperazine analogues, explaining the inhibition profiles.  相似文献   

13.
Li Y  Yao JH  Hu XW  Fan Z  Huang L  Jing HR  Liu KX  Tian XF 《Life sciences》2011,88(1-2):104-109
AimThe aim of this study is to evaluate the role of Rho-kinase in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R) and the preconditioning effects of fasudil hydrochloride. The novel therapeutic approach of using Rho-kinase inhibitors in the treatment of intestinal I/R is introduced.MethodsSprague–Dawley (SD) rats were divided into 4 groups: intestinal I/R group, two fasudil pretreatment groups (7.5 mg/kg and 15 mg/kg), and controls. Intestinal and lung histopathology was evaluated; myeloperoxidase (MPO) and superoxide dismutase (SOD) levels in lung parenchyma were determined. Serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured. eNOS and P-ERM expression were measured by Western Blot.ResultsLung and intestinal injury were induced by intestinal I/R, characterized by histological damage and a significant increase in BALF protein. Compared to controls, serum TNF-α, IL-6, and lung MPO activity increased significantly in the I/R group, while SOD activity decreased. A strongly positive P-ERM expression was observed, while eNOS expression was weak. After fasudil administration, injury was ameliorated. Serum TNF-α, IL-6, lung MPO and P-ERM expression decreased significantly as compared to the I/R group, while SOD activity and eNOS expression increased significantly.SignificanceRho-kinase plays a key role in the pathogenesis of lung injury induced by intestinal I/R. The inhibition of the Rho-kinase pathway by fasudil hydrochloride may prevent lung injury.  相似文献   

14.
Previously we described a novel series of pyrimidinol antioxidants and their structural optimization as potential therapeutic agents for neurodegenerative and mitochondrial disorders. Our initial lead compound was a potent antioxidant in vitro, but was subsequently found to exhibit poor stability to oxidative metabolism. The current study focused on balancing potency with metabolic stability through structural modification, and involved modifications at positions 2 and 4 of the pyrimidinol redox core, likely sites of oxidative metabolism. Eight new analogues have been prepared and their ability to suppress lipid peroxidation and reactive oxygen species (ROS), and to preserve mitochondrial membrane potential (Δψm) and support ATP production, has been investigated. The metabolic stability of the prepared compounds was also assessed in vitro using bovine liver microsomes to obtain preliminary insight on this class of compounds. This study revealed the complexity of balancing reasonable metabolic stability with efficient antioxidant properties. While a few analogues appear promising, especially in terms of metabolic stability, a 4-isopropoxy derivative conserved the favorable biological activity and exhibited good metabolic stability. The favorable metabolic stability conferred by the combination of the azetidine and isopropoxy moieties in analogue 6 makes this compound an excellent candidate for further evaluation.  相似文献   

15.

Background

Metabolic disorders, caused by excessive calorie intake and low physical activity, are important cardiovascular risk factors. Rho-kinase, an effector protein of the small GTP-binding protein RhoA, is an important cardiovascular therapeutic target and its activity is increased in patients with metabolic syndrome. We aimed to examine whether Rho-kinase inhibition improves high-fat diet (HFD)-induced metabolic disorders, and if so, to elucidate the involvement of AMP-activated kinase (AMPK), a key molecule of metabolic conditions.

Methods and Results

Mice were fed a high-fat diet, which induced metabolic phenotypes, such as obesity, hypercholesterolemia and glucose intolerance. These phenotypes are suppressed by treatment with selective Rho-kinase inhibitor, associated with increased whole body O2 consumption and AMPK activation in the skeletal muscle and liver. Moreover, Rho-kinase inhibition increased mRNA expression of the molecules linked to fatty acid oxidation, mitochondrial energy production and glucose metabolism, all of which are known as targets of AMPK in those tissues. In systemic overexpression of dominant-negative Rho-kinase mice, body weight, serum lipid levels and glucose metabolism were improved compared with littermate control mice. Furthermore, in AMPKα2-deficient mice, the beneficial effects of fasudil, a Rho-kinase inhibitor, on body weight, hypercholesterolemia, mRNA expression of the AMPK targets and increase of whole body O2 consumption were absent, whereas glucose metabolism was restored by fasudil to the level in wild-type mice. In cultured mouse myocytes, pharmacological and genetic inhibition of Rho-kinase increased AMPK activity through liver kinase b1 (LKB1), with up-regulation of its targets, which effects were abolished by an AMPK inhibitor, compound C.

Conclusions

These results indicate that Rho-kinase inhibition ameliorates metabolic disorders through activation of the LKB1/AMPK pathway, suggesting that Rho-kinase is also a novel therapeutic target of metabolic disorders.  相似文献   

16.
The 90 kDa ribosomal S6 kinases (RSKs), especially RSK2, have attracted attention for the development of new anticancer agents. Through structural optimization of the hit compound 1 from our previous study, a series of barbituric acid aryl hydrazone analogues were designed and synthesized as potential RSK2 inhibitors. The most potent one, compound 9, showed a higher activity against RSK2 with an IC50 value of 1.95 μM. To analyze and elucidate their structure-activity relationship, the homology model of RSK2 N-terminal kinase domain was built and molecular docking simulations were performed, which provide helpful clues to design new inhibitors with desired activities.  相似文献   

17.
Abstract

Crosslinking of MSH receptors on melanophores of the lizard Anolis carolinensis with analogues of α-MSH containing a photoreactive group in position 1, 7, 9 or 13 leads to long-lasting receptor stimulation. Reversibility of this long-lasting stimulation is obtained by employing a disulfide-containing photoreactive group which can be cleaved from the receptor by thiol reagents [Ref. 3]. When two photo-reactive groups are simultaneously present on the α-MSH molecule (e.g in positions 1 + 9; 1 + 13; 7 + 13, or 9 + 13), identical results were obtained and long-lasting receptor stimulation was not altered after cleavage of one single crosslink. α-MSH analogues with three photoreactive groups in positions 1 + 7 + 13 led to irreversible receptor stimulation whereas one compound with the photoreactive groups in positions 1 + 9 + 13 induced reversible receptor inactivation which could be changed into long-lasting stimulation by cleaving the crosslink at position 1 of α-MSH. These results demonstrate that one and the same peptide ligand may contain structural information for both receptor activation and inhibition and that the receptor may become arrested in an activated or inhibited state by multiple photocrosslinking, depending on the relative positions of these crosslinks.  相似文献   

18.
Summary Tyrosine transamination has been investigatedin vitro with a preparation of rat liver tyrosine aminotransferase in the presence of several structural derivatives of the substrate, including the phosphonic analogue. The transamination by tyrosine aminotransferase (TAT) needs the presence in the substrate molecule of free amino and carboxylic groups, a three-carbon aliphatic chain, a para-phenolic hydroxylic function and al-configuration. Some tyrosine analogues can markedly disturb the Tyr-TAT association: the chief structural modifications are (i) the removal of the free amine function in a compound still possessing a para-hydroxylic and a carboxylic group, (ii) the change of the carboxylic function by another acidic group, especially a phosphonic one, (iii) a disubstitution in positions 3 and 5. In every situation, the presence of a parahydroxylic group is compulsory to observe an inhibitory effect.  相似文献   

19.
Abstract

In order to study structure-activity relationships as to Factor VIII release conscious dogs were injected with analogues of vasopressin. The peptides used were chemically modified either in the hexapeptide ring structure of the vasopressin molecule or in the C-terminal tripeptide or in both. The results showed that an intact C-terminal appears to be of importance for retaining Factor VIII releasing activity of the analogues, whereas at least some modifications of the ring structure are tolerated without loss of activity. Decreased activity was also observed when the disulphide bridge was substituted with a monocarba bond.  相似文献   

20.
Aims: To study the growth inhibitory properties of a series of phytosphingosine (PHS) and phytoceramide (PHC) analogues. Methods and Results: A panel of two yeast (Candida albicans and Saccharomyces cerevisiae) and six moulds (Aspergillus repens, Aspergillus niger, Penicillium chrysogenum, Cladosporium cladosporioides, Arthroderma uncinatum and Penicillium funiculosum) has been used in this study. A series of new PHS and PHC analogues differing at the sphingoid backbone and the functional group at C1 position were synthesized. Conclusions: Among PHS analogues, 1‐azido derivative 1c, bearing the natural d ‐ribo stereochemistry, showed a promising growth inhibitory profile. Among PHC analogues, compound 12, with a bulky N‐pivaloyl group and a Z double bond at C3 position of the sphingoid chain, was the most active growth inhibitor. Minimal inhibitory concentration values were in the range of 23–48 μmol l?1 for 1c and 44–87 μmol l?1 for 12. Significance and Impact of the Study: Only scattered data on the antifungal activity of phytosphingolipids have been reported in the literature. This is the first time that a series of analogues of this kind are tested and compared to discern their structural requirements for antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号