首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 579 毫秒
1.
A series of diorganotin (IV) complexes of the types of R2SnCl(SSCC3H3N2) (R = CH31, nBu 2, C6H53 and C6H5CH24), R2Sn(SSCC3H3N2)2 (R = CH35, nBu 6, C6H57 and C6H5CH28) and R2Sn(SSCC3H2N2) (R = CH39, nBu 10, C6H511 and C6H5CH212) have been obtained by reactions of 4(5)-imidazoledithiocarboxylic acid with diorganotin (IV) dichlorides in the presence of sodium ethoxide. All complexes are characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. Also, the complexes 1, 7 and 9 are characterized by X-ray crystallography diffraction analyses, which reveal that the complex 1 is monomeric structure with five-coordinate tin (IV) atom, the complex 7 is monomeric structure with six-coordinate tin (IV) atom and the complex 9 is one-dimensional chain with five-coordinate tin (IV) atom.  相似文献   

2.
New (Q)2SnR2 derivatives (HQ in general; in detail: HQCHPh2 = 4-diphenylacetyl-3-methyl-1-phenyl-5-pyrazolone; HQBn = 3-methyl-1-phenyl-4-phenylacetyl-5-pyrazolone; HQnaph = 3-methyl-4-naphthoyl-1-phenyl-5-pyrazolone; R = CH3, C2H5, C6H11, n- and t-C4H9, C6H5,) have been synthesised and characterised by analytical and spectral techniques. Variable temperature NMR studies of (QCHPh2)2SnR2 derivatives (R = CH3 and C2H5) in chlorohydrocarbon solvents indicate a fluxional behaviour, with rapid interconversion between six- and five-coordinate species, the latter containing a bidentate acylpyrazolonate and a monodentate one. The X-ray crystal structures of the diorganotin(IV) derivatives (QCHPh2)2SnMe2, (QCHPh2)2SnEt2, (QBn)2SnMe2 and , inclusive of a representative of each Qx family, show the metal centres in a skewed trans octahedral configuration. The 4-acyl moiety of the β-diketonate donor exerts a steric effect which is correlated to structural behaviour in the solid and solution state. A solid state 119Sn CPMAS NMR study of the (QBn)2SnR2 (R = CH3, C2H5, t-C4H9 and C6H5) complexes shows a marked deshielding effect and upfield movement of the 119Sn isotropic chemical shift (δiso) through this series. The 119Sn chemical shift spans (Ω) are the largest reported for directly oxo-coordinated Sn(IV) systems, although the markedly reduced Ω value for the (QBn)2SnPh2 complex may be indicative of a cis octahedral coordination, in contrast to the trans octahedral coordination characterising the other complexes of this suite.  相似文献   

3.
A series of arylantimony ferrocenylacrylates with the formula (C5H5FeC5H4CHCHCO2)nSbAr(5−n) (n=1, 2; Ar C6H5, 4-CH3C6H4, 3-CH3C6H4, 2-CH3C6H4, 4-FC6H4) have been synthesized and characterized by elemental analysis, IR, 1H NMR and mass spectra. The crystal structures of C5H5FeC5H4CHCHCO2Sb(C6H5)4 (I1) and (C5H5FeC5H4CHCHCO2)2Sb(C6H5)3 (II1) have been determined by X-ray diffraction.  相似文献   

4.
Reactions of alkanolamines [R1R2NXOH; R1 = H, CH3, C2H5; R2 = H, CH3, C2H5 and X = -CH2CH2-, -CH2CH2CH2-, -CH2CHCH3, -C6H4CH2CH2-] with aluminium isopropoxide in different molar ratios (1 to 3) yield compounds of the type Al(OPri)3?n(OXNR1R2)n, where ‘n’ can be 1, 2 and 3. Most of the derivatives are distillable liquids, soluble in common organic solvents and susceptible to hydrolysis even by atmospheric moisture. The new derivatives are characterized by elemental analysis, IR and 1H NMR spectra. Molecular weight measurements of Al(OPri)3?n(OXNR1R2)n reveal them to be tetrameric in nature.  相似文献   

5.
A series of para-substituted triaryltin(pentacarbonyl)manganese(I) compounds [(p-XC6H4)3SnMn(CO)5: II, X=CH3; III, X=CH3O; IV, X=CH3S; V, X=F; VI, X=Cl; VII, X=CH3S(O2)] is reported for comparison with the known phenyl analogue I. IR data [ν(CO)] as well as complete 119Sn/55Mn/13C solution NMR results are given for I-VII. Chemical shifts, 119Sn versus 55Mn, except I, correlate well, but have differing single parameter (SP) correlations, 119Sn versus σI and 55Mn versus σ°p. These results are compared with previous SP studies of the 119Sn solution NMR spectra of the series, (p-XC6H4)4Sn and (p-XC6H4)3SnY (Y=Cl, Br, I). Full crystal structures are reported for compounds II-VI. All are similar to that of I, with the Mn(CO)5 moiety being a distorted tetragonal pyramid, and having a quasi-mirror plane through the central C4MnSnC3 skeleton. The Ar3Sn are distorted trigonal propellers with ring torsion angles in the range 30-80°, the exception being IV with one torsion angle of 22°.  相似文献   

6.
Depending on experimental conditions and the nature of the phosphite, the reaction of OsH2P4 [P=P(OEt)3 and PPh(OEt)2] with bis(aryldiazonium) salts [N2Ar-ArN2](BF4)2 [Ar-Ar=4,4-C6H4-C6H4, 4,4-(2-CH3)C6H3-C6H3(2-CH3), 4,4-C6H4-CH2-C6H4 and 1,5-C10H6] afford the cis and the trans binuclear [{OsHP4}2(μ-HNNAr-ArNNH)](BPh4)21, 2 aryldiazene derivatives. These complexes 1, 2 further react with the mono(diazonium) (4-CH3C6H4N2)BF4 salt to give the bis(aryldiazene) [{Os(4-CH3C6H4NNH)P4}2(μ-HNNAr-ArNNH)](BPh4)43, 4 derivatives. Binuclear bis(aryldiazenido) [{OsP4}2(μ-N2Ar-ArN2)](BPh4)2 (6) [P=P(OEt)3; Ar-Ar=4,4-C6H4-C6H4, 4,4-C6H4-CH2-C6H4] complexes were prepared by deprotonating with NEt3 the nitrile-diazene [{Os(4-CH3C6H4CN)P4}2(μ-HNNAr-ArNNH)](BPh4)4 (5) derivatives. The aryldiazenido compounds 6 react with HCl to give the new aryldiazene [{OsClP4}2(μ-HNNAr-ArNNH)](BPh4)2 (7) derivatives. The characterisation of the complexes by IR and 1H, 31P, 15N NMR data is also discussed. The reaction of the hydride OsH2(PPh2OEt)4 with mono(diazonium) salts was also studied and led exclusively to the mono(aryldiazene) [OsH(ArN NH)(PPh2OEt)4]BPh4 (8) (Ar=C6H5, 4-CH3C6H4) derivatives. Spectroscopic data (1H, 31P, 15N NMR) on 15N-labelled derivatives suggest the presence of two isomers with the N-bonded and the π-bonded ArNNH ligand, respectively.  相似文献   

7.
Six new triorganotin(IV) complexes, [R3Sn(O2SeC6H4Cl)]n (R = Me 1; Ph 2), [R3Sn(O2SeC6H4Me)]n (R = Me 3; Ph 4), [R3Sn(O2SeC6H4Bu)]n (R = Me 5; Ph 6) have been synthesized by the reaction of 4-chlorobenzeneseleninic acid, p-Tolueneseleninic acid, and 4-tert-butylbenzeneseleninic acid with triorganotin(IV) chloride in the presence of sodium ethoxide. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, and 119Sn) spectroscopy, and X-ray crystallography. Crystal structures show that all of the complexes exhibit 1D infinite chain structures which are generated by the bidentate oxygen atoms and the five-coordinated tin centers.  相似文献   

8.
Three new diorganotin(IV) complexes, [Bu2Sn(O2SeC6H5)2]n (1), [Bu2Sn(O2SeC6H4Me)2]n (2), [Me2Sn(O2SeC6H4Bu)2]n (3) have been synthesized by the reaction of benzeneseleninic acid, p-tolueneseleninic acid, and 4-tert-butylbenzeneseleninic acid with Me2SnCl2 or Bu2SnCl2 in the presence of sodium ethoxide in methanol at 50 °C. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C and 119Sn) spectroscopy and X-ray crystallography. X-ray diffraction studies of 1, 2, 3 show that the areneseleninate groups behave as double bridges between the tin atoms leading to polymeric chain structure with Sn2O4Se2 eight-membered ring. The organic groups bonded to the tin atoms are in trans-position in the resulting octahedral arrangement.  相似文献   

9.
A series of mononuclear organotin(IV) complexes of the types, R3SnL {R = C4H9 (1), C6H11 (2), CH3 (3) and C6H5 (4)}, R2SnClL {R = C4H9 (5), C2H5 (7) and CH3 (9)} and R2SnL2 {R = C4H9 (6), C2H5 (8) and CH3 (10)}, have been synthesized, where L = 4-(4-methoxyphenyl)piperazine-1-carbodithioate. The ligand-salt and the complexes have been characterized by Raman, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and elemental microanalysis (CHNS). The spectroscopic data substantiate coordination of the ligands to the organotin moieties. The structures of complexes 4 and 6 have been determined by single-crystal X-ray diffraction and illustrate the asymmetric bidentate bonding of the ligand. The packing diagrams indicate O···H and π···H intermolecular interactions in complex 4 and intermolecular S2C···H interactions in complex 6, resulting in layer structures for both complexes. A subsequent antimicrobial study indicates that the compounds are active biologically and may well be the basis for a new class of fungicides.  相似文献   

10.
A series of new organotin(IV) derivatives with 2,3,4,5-tetrafluorobenzoic acid: {[(2,3,4,5-F4C6HCO2)R2Sn]2O}2 (R = Et 1, n-Bu 2, Ph 3), [R2Sn(O2CC6F4H)2]n (R = n-Bu 4, Et 5, Ph 6), and Sn2R4(O2CC6F4H)3(OH) (R = Et 7, n-Bu 8, Ph 9), were synthesized by the reaction of diorganotin oxide and 2,3,4,5-tetrafluorobenzoic acid. All the complexes 1-9 have been characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectra. Among them complexes 2, 4, 8 were also characterized by X-ray crystallography diffraction analyses. The crystal structure of complex 2 exhibited a tetra-nuclear geometry with the Sn2O2 symmetry core. Complex 4 formed a 1D helical double-chain structure through intermolecular O→Sn coordinating and completed a DNA-like assembly. Complex 8 revealed that the both Sn atoms were held together by hydroxide and acetate bridges, forming a chair-like six-membered ring. Moreover, the supramolecular structures of dimer, 1D chain or 2D network have been found in complexes 4 and 8 by intermolecular C-H?F weak hydrogen bond and non-bonded F?F or F?Sn interaction, which were highly effective in the assembly of supramolecular structures and could lead to the formation of complexes with fascinating topologies properties.  相似文献   

11.
A series of new diorganotin and triorganotin(IV) heterocyclicdicarboxylates [(nBu3Sn)2(2,5-pdc)] (1), {[(2-FC6H4CH2)3Sn]2(2,5-pdc)} (2), {[(2-ClC6H4CH2)3Sn]2(2,5-pdc)} (3), {[(4-CNC6H4CH2)3Sn]2(2,5-pdc)} (4), {[(4-ClC6H4CH2)3Sn]2(2,5-pdc)} (5), [(Ph)2Sn(2,6-pdc)(H2O)] (6), {[nBu3Sn(2,6-pdc)SnnBu3]2(H2O)2} · C2H3N (7) and {[Ph3Sn(2,3-pdz)SnPh3]2(H2O)} (8) have been obtained by reactions of diorganotin(IV) and triorganotin (IV) oxide with 2,6 or 2,5-H2pdc (pdc = pyridinedicarboxylate) or 2,3-H2pdz (pdz = pyrazinedicarboxylate). Complexes 1-8 were characterized by elemental, IR and NMR spectra analyses. The crystal and molecular structures of compounds 1, 6, 7 and 8 have been determined by X-ray single crystal diffraction. Compound 1 has 2D network structures. Compound 6 has 1D polymeric chain and 3D framework supramolecular structures due to the coordinated water molecules. Compound 7 has a monomeric structure, but the supramolecular structures are network.  相似文献   

12.
A systematic synthesis and X-ray structural analysis have been made for several manganese derivatives with pyridine-2-methanol as a chelating ligand; neutral Mn(C5NH4-2-CH2OH)2(C6F5CO2)2 (1), trans-[Mn(C5H4N-2-CH2-OH)2{C6F4-1,4-(CO2)2}] (2), cis-[Mn(C5H4N-2-CH2-OH)2{C6F4-1,3-(CO2)2}] (3), {Mn(C5H4N-2-CH2-OH)2(4,4-bipyridine)(ClO4)} (4), and Mn(C5H4N-2-CH2-OH)3(ClO4)2(4,4-azopiridine) (pyridine-2-methanol) (5) are our results. 1 and 5 are monomers, while 2-4 are polymers. An oxidation state of the manganese ion in 1, 2, 3, and 5 is 2+, while that of 4 is suggested to be 3+. The magnetic data of 4 down to 2 K are measured. The length of the linker ligand has been suggested to afford a crucial effect on the dimensionality of the product.  相似文献   

13.
14.
Four new diorganotin(IV), (R = Me, Bu), and triorganotin(IV), (R = Me, Ph), derivatives of the phosphomycin disodium salt antibiotic[(1R,2S)-1,2-epoxypropylphosphonate]Na2 have been synthesized and their solid state configuration studied by X-ray crystallography, FT-IR, Mössbauer, UV-Vis spectroscopies. The X-ray diffraction investigation, performed on the bis[trimethyltin(IV)]phosphomycin, showed that the coordination geometry at all the Sn atoms is trigonal bipyramidal. The structure of the complex forms an unusual polymeric zig-zag planar network. The FT-IR and the 119Sn Mössbauer studies supported the formation of trigonal bipyramidal (Tbp) molecular structures, both in the diorganotin(IV) and triorganotin(IV) derivatives, even if, in the case of diorganotin(IV) derivatives, the tetrahedral structure cannot be a priori excluded. The group of phosphomycin coordinates the organotin(IV) centers originating a monodimensional polymeric network, as inferred by variable temperature 119Sn Mössbauer spectroscopy, used to investigate lattice dynamics of the bis-[trimethyltin(IV)]phosphomycin complex.  相似文献   

15.
Toxicological and pharmacological studies demonstrated that the introduction of functional groups into the aromatic ring of diphenyl diselenide alter its effect. The aim of this study was to evaluate the in vitro effect of m-trifluoromethyl-diphenyl diselenide (m-CF3–C6H4Se)2, p-chloro-diphenyl diselenide (p-Cl–C6H4Se)2 and p-methoxyl-diphenyl diselenide (p-CH3O–C6H4Se)2 on δ-aminolevulinate dehydratase (δ-ALA-D) and Na+, K+-ATPase activities in rat brain homogenates. Diselenides inhibited δ-ALA-D activity (IC50 4–6 μM [concentration inhibiting 50%]), and dithiothreitol (DTT) restored the enzyme activity. ZnCl2 (100 μM) did not restore δ-ALA-D inhibition caused by (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2. Na+, K+-ATPase activity was more sensitive to (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2 (IC50 6 μM) than (p-CH3O–C6H4Se)2 and (PhSe)2 (IC50 45 and 31 μM, respectively). DTT restored the activity of Na+, K+-ATPase inhibited by diselenides. The effect of diselenides on Na+/K+-ATPase is dependent on their substitutions in the aromatic ring. The mechanism through which diselenides inhibit δ-ALA-D and Na+, K+-ATPase activities involves the oxidation of thiol groups.  相似文献   

16.
New silver(I) acylpyrazolonate derivatives [Ag(Q)], [Ag(Q)(PR3)]2 and [Ag(Q)(PR3)2] (HQ = 1-R1-3-methyl-4-R2(CO)pyrazol-5-one, HQBn = R1 = C6H5, R2 = CH2C6H5; HQCHPh2 = R1 = C6H5, R2 = CH(C6H5)2; HQnPe = R1 = C6H5, R2 = CH2C(CH3)3; HQtBu = R1 = C6H5, R2 = C(CH3)3; HQfMe = R1 = C6H4-p-CF3, R2 = CF3; HQfEt = R1 = C6H5, R2 = CF2CF3; R = Ph or iBu) have been synthesized and characterized in the solid state and solution. The crystal structure of 1-(4-trifluoromethylphenyl)-3-methyl-5-pyrazolone, the precursor of proligand HQfMe and of derivatives [Ag(QnPe)(PPh3)2] and [Ag(QnPe)(PiBu3)]2 have been investigated. [Ag(QnPe)(PPh3)2] is a mononuclear compound with a silver atom in a tetrahedrally distorted AgO2P2 environment, whereas [Ag(QnPe)(PiBu3)]2 is a dinuclear compound with two O2N-exotridentate bridging acylpyrazolonate ligands connecting both silver atoms, their coordination environment being completed by a phosphine ligand.  相似文献   

17.
The acyclic Schiff-base ligands (2-(OH)-5-(R3)C6H2-1,3-(HCNC(R1)(R2)CO2H), derived from the dialdehyde 2-hydroxy-5-R-1,3-benzenedicarboxaldehyde (R = Me or t-Bu) and two equivalents of the amino acids glycine, 2,2-diphenylglycine or phenylalanine, have been reacted with the metal acetates M(OAc)2 (M = Cu, Zn) in the presence of triethylamine, affording the complexes [HNEt3][M2(CH3CO2)2(2-(O)-5-(t-Bu)C6H2-1,3-(HCNC(R1)(R2)CO2)2] (M = Cu, R1 = R2 = C6H5, R3 = Me (1); M = Zn, R1 = R2 = H, R3 = t-Bu (2); M = Zn, R1 = R2 = C6H5, R3 = t-Bu (3); M = Zn, R1 = H, R2 = CH2C6H5, R3 = t-Bu (4)) in good yields. The crystal structures of 1·MeCN, 2·, 3·2MeOH, and 4·3MeOH have been determined.  相似文献   

18.
The reaction of the racemic chiral methyl complex (η5-C5H5)Re(NO)(PPh3)(CH3) (1) with CF3SO3H and then NH2CH2C6H5 gives [(η5-C5H5)Re(NO)(PPh3)(NH2CH2C6H5)]+ ([4a-H]+; 73%), and deprotonation with t-BuOK affords the amido complex (η5-C5H5)Re(NO)(PPh3)(NHCH2C6H5) (76%). Reactions of 1 with Ph3C+ X and then primary or secondary amines give [(η5-C5H5)Re(NO)(PPh3)(CH2NHRR′)]+ X ([6-H]+ X; R/R′/X = a, H/NH2CH2C6H5/BF4; a′, H/NH2CH2C6H5/PF6; b, H/NH2CH2(CH2)2CH3/PF6; c, H/(S)-NH2CH(CH3)C6H5/BF4); d, CH2CH3/CH2CH3/PF6; e, CH2(CH2)2CH3/CH2(CH2)2CH3/PF6; f, CH2C6H5/CH2C6H5/PF6; g, -CH2(CH2)2CH2-/PF6; h, -CH2(CH2)3CH2-/PF6; i, CH3/CH2CH2OH/PF6 (62-99%). Deprotonations with t-BuOK afford the amines (η5-C5H5)Re(NO)(PPh3)(CH2NRR′) (6a-i; 99-40%), which are more stable and isolated in analytically pure form when R ≠ H. Enantiopure 1 is used to prepare (RReSC)-[6c-H]+, (RReSC)-6c, (S)-[6g-H]+, and (S)-6g. The crystal structures of [4a-H]+, a previously prepared NH2CH2Si(CH3)3 analog, [6a′,d,f,h-H]+, (RReSC)-6c, and 6f are determined and analyzed in detail, particularly with respect to cation/anion hydrogen bonding and conformation. In contrast to analogous rhenium containing phosphines, 6a-i show poor activities in reactions that are catalyzed by organic amines.  相似文献   

19.
A number of organometallic derivatives involving 6-amino penicillinic acid (I), of the types η5-R)2M- (Cl)L?Et3NH+ (II), (η5-R)2M(Cl)L (III) and R′HgL [R = cyclopentadienyl (C5H5), indenyl (C9H7), R′ = phenyl (C6H5), p-acetoxyphenyl (p-CH3COOC6H4), o-hydroxyphenyl (o-HOC6H4), p-hydroxyphenyl (p-HOC6H4); M = Ti(IV), Zr(IV); LH = 6-amino penicillinic acid] have been synthesized and characterized. Conductance measurements indicate that while the (η5-R)2M(Cl)L?Et3NH+ complexes are 1:1 electrolytes, the remaining compounds are non-electrolytes. From IR and UV spectral studies it is concluded that the penicillin moiety is bidentate. PMR and CMR studies support the stoichiometry of the complexes. Fluorescence studies have been carried out for o- and p-HOC6H4HgL complexes and relevant photochemical parameters have been elucidated. X-ray diffraction studies have been made for the o-HOC6H4HgL complex. For the C6H5HgL, p-CH3COOC6H4HgL and p-HOC6H4HgL complexes, thermal studies (TG and DTA) have been carried out and kinetic parameters for thermal degradation have been enumerated. In addition, the fragmentation pattern of these complexes has been analysed on the basis of mass spectra. The C6H5HgL and p-CH3COOC6H4HgL complexes show positive bactericidal activities.  相似文献   

20.
Trityl borate salts [4-RPyCPh3][B(C6F5)4] (R = H 1, tBu 2, Et 3, NMe24) and [R3PCPh3][B(C6F5)4] (R = Me 5, nBu 6, Ph[1] 7, p-MeC6H48) are readily prepared via equimolar reaction of the appropriate pyridine or phosphine and trityl borate [CPh3][B(C6F5)4]. The analogous reactions of PiPr3 affords the product [(p-iPr3P-C6H4)Ph2CH][B(C6F5)4] (9) while the corresponding reactions of Cy3P and tBu3P gave the cyclohexadienyl derivatives [(p-R3PC6H5)CPh2][B(C6F5)4] (R = Cy 10, tBu 11). X-ray structures of 5 and 9 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号