首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curcumin was investigated as an inhibitor of glycogen synthase kinase-3beta (GSK-3beta) in an attempt to explain some of its interesting multiple pharmacological effects, such as its anti-diabetic, anti-inflammatory, anti-cancer, anti-malarial and anti-alzheimer's properties. The investigation included simulated docking experiments to fit curcumin within the binding pocket of GSK-3beta followed by experimental in vitro and in vivo validations. Curcumin was found to optimally fit within the binding pocket of GSK-3beta via several attractive interactions with key amino acids. Experimentally, curcumin was found to potently inhibit GSK-3beta (IC50 = 66.3 nM). Furthermore, our in vivo experiments illustrated that curcumin significantly increases liver glycogen in fasting Balb/c mice. Our findings strongly suggest that the diverse pharmacological activities of curcumin are at least partially mediated by inhibition of GSK-3beta.  相似文献   

2.
Famotidine was investigated as an inhibitor of glycogen synthase kinase-3β (GSK-3β) in an attempt to explain the molecular mechanism of its hypoglycemic side effects. The investigation included simulated docking experiments, in vitro enzyme inhibition assay, glycogen sparing studies using animal models and single dose oral glucose tolerance test (OGTT). Docking studies showed how famotidine is optimally fit within the binding pocket of GSK-3β via numerous attractive interactions with some specific amino acids. Experimentally, famotidine could inhibit GSK-3β (IC50 = 1.44 μM) and increased significantly liver glycogen spares in fasting animal models. Moreover, a single oral dose of famotidine was shown to decrease the glycemic response curve after 75 g OGTT  相似文献   

3.
Curcumin has been reported to attenuate muscle atrophy. However, the underling mechanism remains unclear. The aim of this study was to investigate whether curcumin could improve chronic kidney disease (CKD)-induced muscle atrophy and mitochondrial dysfunction by inhibiting glycogen synthase kinase-3β (GSK-3β) activity. The sham and CKD mice were fed either a control diet or an identical diet containing 0.04% curcumin for 12 weeks. The C2C12 myotubes were treated with H2O2 in the presence or absence of curcumin. In addition, wild-type and muscle-specific GSK-3β knockout (KO) CKD model mice were made by 5/6 nephrectomy, and the sham was regarded as control. Curcumin could exert beneficial effects, including weight maintenance and improved muscle function, increased mitochondrial biogenesis, alleviated mitochondrial dysfunction by increasing adenosine triphosphate levels, activities of mitochondrial electron transport chain complexes and basal mitochondrial respiration and suppressing mitochondrial membrane potential. In addition, curcumin modulated redox homeostasis by increasing antioxidant activity and suppressed mitochondrial oxidative stress. Moreover, the protective effects of curcumin had been found to be mediated via inhibiting GSK-3β activity in vitro and in vivo. Importantly, GSK-3β KO contributed to improved mitochondrial function, attenuated mitochondrial oxidative damage and augmented mitochondrial biogenesis in muscle of CKD. Overall, this study suggested that curcumin alleviated CKD-induced mitochondrial oxidative damage and mitochondrial dysfunction via inhibiting GSK-3β activity in skeletal muscle.  相似文献   

4.
Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future.  相似文献   

5.
Recent findings of potential implications of glycogen synthase kinase-3β (GSK-3β) dysfunction in psychiatric disorders like depression, have increased focus for development of GSK-3β inhibitors with possible anti-depressant activity. Keeping this in view, we synthesized a series of benzimidazole-linked-1,3,4-oxadiazole carboxamides and evaluated them for in vitro GSK-3β inhibition. Active compounds were investigated for in vivo antidepressant activity in Wistar rats. Docking studies of active compounds have also been performed. Among nineteen compounds synthesized, compounds 7a, 7r, 7j, and 7d exhibited significant potency against GSK-3β in sub-micromolar range with IC50 values of 0.13 μM, 0.14 μM, 0.20 μM, 0.22 μM respectively and significantly reduced immobility time (antidepressant-like activity) in rats compared to control group. Docking study showed key interactions of these compounds with GSK-3β. These compounds may thus serve as valuable candidates for subsequent development of effective drugs against depression and related disorders.  相似文献   

6.
7.
The 3.15-Å-resolution crystal structure of the R enantiomer of the highly bioactive and antiproliferative half-sandwich ruthenium complex DW12 bound to the ATP binding site of glycogen synthase kinase 3β (GSK-3β) is reported and the binding is compared with the GSK-3β binding of staurosporine and other organic inhibitors. The structure reveals a close packing of the organometallic inhibitor in the ATP binding site of GSK-3β via an induced-fit mechanism. The molecular structure of (R)-DW12 with the CO ligand oriented perpendicular to the pyridocarbazole heterocycle allows the complex to stretch the whole distance sandwiched between the faces of the N- and C-terminal lobes and to interact tightly with the flexible glycine-rich loop, which is uncommon for the interaction of GSK-3β with organic inhibitors.  相似文献   

8.
9.
Glycogen synthase kinase-3 (GSK-3) is a multifunctional protein kinase that plays important roles in regulating both glycogen synthesis and protein synthesis. In the present study, we investigated GSK-3β phosphorylation of silkworm eggs by immunoblotting with a conserved phospho-specific antibody to GSK-3β. Results showed that the temporal changes in GSK-3β phosphorylation were closely related to changes in glycogen levels previously reported by other researchers. In diapause eggs, an abrupt decrease in phosphorylation of GSK-3β was found with the onset of diapause, and phosphorylation level of GSK-3β reached a minimum level within 1 week after oviposition. However, when diapause eggs were incubated at 25 °C for 15 days and then transferred to 5 °C, a great increase in GSK-3β phosphorylation was observed 5 days after transfer to 5 °C and high levels were maintained throughout the chilling period. In both non-diapause eggs and eggs whose diapause initiation was prevented by HCl, levels of GSK-3β phosphorylation appeared to remain relatively high for several days and then greatly decreased 2 or 3 days before hatching. Moreover, GSK-3β phosphorylation dramatically increased when dechorionated eggs were incubated in medium. The addition of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor, U0126, did not inhibit GSK-3β phosphorylation in dechorionated eggs, although U0126 dose-dependently inhibited ERK phosphorylation. This result showed that ERK phosphorylation is not involved in upstream signaling for GSK-3β phosphorylation and that there may be two distinct signaling pathways involved in diapause processing in Bombyx mori eggs.  相似文献   

10.
Deregulation of Wnt/β-catenin pathway is closely related to the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD), and glycogen synthase kinase 3β (GSK-3β), the central negative regulator of Wnt pathway, is regarded as an important target for these diseases. Here, we report a series of benzo[e]isoindole-1,3-dione derivatives as selective GSK-3β inhibitors by rational-design and synthesis, which show high selectivity against GSK-3β over Cyclin-dependent kinase 2 (CDK2), and significantly activate the cellular Wnt/β-catenin pathway. The structure–activity relationship of these GSK-3β inhibitors was also explored by in silico molecular docking.  相似文献   

11.
Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.  相似文献   

12.
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer’s disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors.
Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
  相似文献   

13.
Abstract

Curcumin (1) is a potent antioxidant and antitumor natural product. In spite of its efficacy and safety, its clinical use is hindered mainly by poor water solubility and bioavailability. Structural modification to introduce hydrophilic functions is a promising approach to resolve this problem. In the present study we first found that curcumin could be efficiently converted into glucosides by filamentous fungi including Rhizopus chinensis IFFI 03043, Absidia coerulea AS 3.3389 and Cunninghamella elegans AS 3.1207. Curcumin 4′-O-β-d-glucoside (2), together with hexahydrocurcumin (3), was isolated from a preparative-scale biotransformation with R. chinensis IFFI 03043 and characterized fully by NMR and MS. A time-course study revealed that curcumin could be efficiently converted into curcumin 4′-O-β-d-glucoside within 8 h when administered at 0.05 mmol L?1 and the productivity was 57%. Additionally, the biotransformation products of curcumin by different fungal strains were analyzed by LC/MS. At least 15 metabolites were detected, and the predominant biotransformation reaction was glucosylation. This study provides a simple, efficient and less expensive approach for the preparation of curcumin glucosides. The introduction of the glucosyl function might be able to enhance the bioavailability of curcumin.  相似文献   

14.
A series of 2-(2-phenylmorpholin-4-yl)pyrimidin-4(3H)-ones was synthesized and examined for their inhibitory activity against glycogen synthase kinase-3β (GSK-3β). We found 21, 29 and 30 to possess potent in vitro GSK-3β inhibitory activity with good in vitro PK profiles. 21 demonstrated significant decrease of tau phosphorylation after oral administration in mice and excellent PK profiles.  相似文献   

15.
BACE-1 and GSK-3β both are potential therapeutic drug targets for Alzheimer’s disease. Recently, both these targets received attention for designing dual inhibitors. Till now only two scaffolds (triazinone and curcumin) derivatives have been reported as BACE-1 and GSK-3β dual inhibitors. In our previous work, we have reported first in class dual inhibitor for BACE-1 and GSK-3β. In this study, we have explored other naphthofuran derivatives for their potential to inhibit BACE-1 and GSK-3β through docking, molecular dynamics, binding energy (MM-PBSA). These computational methods were performed to estimate the binding affinity of naphthofuran derivatives towards the BACE-1 and GSK-3β. In the docking results, two derivatives (NS7 and NS9) showed better binding affinity as compared to previously reported inhibitors. Hydrogen bond occupancy of NS7 and NS9 generated from MD trajectories showed good interaction with the flap residues Gln73, Thr72 of BACE-1 and Arg141, Thr138 residues of GSK-3β. MM-PBSA and energy decomposition per residue revealed different components of binding energy and relative importance of amino acid involved in binding. The results showed that the binding of inhibitors was majorly governed by the hydrophobic interactions and suggesting that hydrophobic interactions might be the key to design dual inhibitors for BACE1-1 and GSK-3β. Distance between important pair of amino acid residues indicated that BACE-1 and GSK-3β adopt closed conformation and become inactive after ligand binding. The results suggested that naphthofuran derivatives might act as dual inhibitor against BACE-1 and GSK-3β.  相似文献   

16.
Hsp90α and Hsp90β are implicated in a number of cancers and neurodegenerative disorders but the lack of selective pharmacological probes confounds efforts to identify their individual roles. Here, we analyzed the binding of an Hsp90α-selective PU compound, PU-11-trans, to the two cytosolic paralogs. We determined the co-crystal structures of Hsp90α and Hsp90β bound to PU-11-trans, as well as the structure of the apo Hsp90β NTD. The two inhibitor-bound structures reveal that Ser52, a nonconserved residue in the ATP binding pocket in Hsp90α, provides additional stability to PU-11-trans through a water-mediated hydrogen-bonding network. Mutation of Ser52 to alanine, as found in Hsp90β, alters the dissociation constant of Hsp90α for PU-11-trans to match that of Hsp90β. Our results provide a structural explanation for the binding preference of PU inhibitors for Hsp90α and demonstrate that the single nonconserved residue in the ATP-binding pocket may be exploited for α/β selectivity.  相似文献   

17.
GSK-3 specific inhibitors are promising candidates for the treatment of devastating pathologies such as diabetes, neurodegenerative diseases and cancers. We have synthesized a library of pyrimidin-4-one-1,2,3-triazole conjugates using click-chemistry approach and evaluated them as glycogen synthase kinase-3β inhibitors. Compounds 3g, 3j, 3n and 3r were found to be most potent among the eighteen pyrimidin-4-one-1,2,3-triazole conjugates synthesized and they were further evaluated for their in vivo anti-depressant activity. Compound 3n (2-((1-(3,4-dimethylphenyl)-1H-1,2,3-triazol-4-yl)methylthio)-3-methyl-6-phenylpyrimidin-4(3H)-one) exhibited the most potent inhibitory activity against GSK-3β with IC50 value of 82 nM and was also found to exhibit significant antidepressant activity at 50 mg/kg, when compared with fluoxetine, a known antidepressant drug. The molecular docking studies were performed to elucidate the binding modes of the compounds with the GSK-3β target and two crucial interactions namely, hydrogen bond formation with Val 135 and Lys 183 residues in the active site of GSK-3β were observed.  相似文献   

18.
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.  相似文献   

19.
Abstract

Previous reports have validated the glycogen synthase kinase-3 (GSK-3) as a druggable target against the human protozoan parasite Leishmania. This prompted us to search for new leishmanicidal scaffolds as inhibitors of this enzyme from our in-house library of human GSK-3β inhibitors, as well as from the Leishbox collection of leishmanicidal compounds developed by GlaxoSmithKline. As a result, new leishmanicidal inhibitors acting on Leishmania GSK-3 at micromolar concentrations were found. These inhibitors belong to six different chemical classes (thiadiazolidindione, halomethylketone, maleimide, benzoimidazole, N-phenylpyrimidine-2-amine and oxadiazole). In addition, the binding mode of the most active compounds into Leishmania GSK-3 was approached using computational tools. On the whole, we have uncovered new chemical scaffolds with an appealing prospective in the development and use of Leishmania GSK-3 inhibitors against this infectious protozoan.  相似文献   

20.
A molecular understanding of substrate recognition of protein kinases provides an important basis for the development of substrate competitive inhibitors. Here, we explored substrate recognition and competitive inhibition of glycogen synthase kinase (GSK)-3β using molecular and computational tools. In previous work, we described Gln89 and Asn95 within GSK-3β as important substrates binding sites. Here, we show that the cavity bordered by loop 89-QDKRFKN-95, located in the vicinity of the GSK-3β catalytic core, is a promiscuous substrate binding subsite. Mutations within this segment highlighted Phe93 as an additional essential contact residue for substrates' recognition. However, unlike Gln89 and Asn95, Phe93 was also important for the binding of our previously described substrate competitive inhibitor, L803 [KEAPPAPPQS(p)P], and its cell-permeable variant L803-mts. The effects of the substitution of charged or polar residues within L803 further suggested that binding to GSK-3β is governed by hydrophobic interactions. Our computational model of GSK-3β bound to L803 was in agreement with the experimental data. It revealed L803 binding with a hydrophobic surface patch and identified interactions between Pro8 (L803) and Phe93 (GSK-3β). Computational modeling of new L803 variants predicted that inhibition would be strengthened by adding contacts with Phe93 or by increasing the hydrophobic content of the peptide. Indeed, the newly designed L803 variants showed improved inhibition. Our study identified different and overlapping elements in GSK-3β substrate and inhibitor recognition and provides a novel example for model-based rational design of substrate competitive inhibitors for GSK-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号