首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
HeLa cells bind horse spleen ferritin when the two are incubated at 0 degrees C. Since the majority of this bound ferritin is located in coated pits, we conclude that the ferritin binds to a specific receptor which takes part in an endocytic cycle. When substrate-attached and well-spread giant HeLa cells are briefly labelled at 0 degrees C with ferritin, ferritin particles are found to be concentrated towards the cell periphery, where they exist largely outside coated pits. This peripheral concentration is a property of circulating (and not just newly synthesized) receptors because it is not affected by prior incubation of giant cells in cycloheximide. However, coated pits are themselves roughly uniformly distributed over the surface of these cells. These results provide evidence that the membrane internalised by coated pits on these cells is returned to the cell surface at the leading edge of the cell. Because of this separation of the sites of endocytosis and exocytosis, a flow of membrane must occur across the cell surface. This flow is composed of lipid plus receptors. The implications of this for capping and for cell spreading are discussed.  相似文献   

2.
Coated pits trap cell surface receptors and mediate their internalization. Once internalized, many receptors recycle back to the cell surface. When recycled receptors are inserted into the plasma membrane, they move until they are again trapped in coated pits. The mechanisms for moving receptors from their insertion sites to coated pits are unknown. Unaided diffusion as the transport mechanism is consistent with the observed kinetics of receptor recycling. Another candidate for the transport mechanism is convection. For receptors that recycle to random positions on the cell surface, or to restricted regions about coated pits, we assess the importance of convective flow in the transport of receptors to coated pits. First we consider local flows set up by the formation of coated pits and their transformation into coated vesicles. As coated pits form and round into coated vesicles, surrounding membrane is drawn inward, creating flows directed toward the coated pit centers. We show that unless the lifetime of a coated pit is very short, 10 s or less, such local flows have a negligible effect on the time it takes receptors to reach coated pits. We also show that they are unlikely to be the mechanism that keeps receptors that have reached coated pits trapped within coated pits until they are internalized. Finally we calculate the mean time tau for a diffusing receptor to reach a coated pit in the presence of membrane flow that is constant in magnitude and direction, as may occur on moving cells. We show that for typical membrane flow velocities, tau can be reduced significantly from its value in the absence of flow. For example, a velocity v = 2.8 micron/min cuts the mean transport time in half.  相似文献   

3.
A variety of receptors are known to aggregate in specialized cell surface structures called coated pits, prior to being internalized when the coated pits close off. At 37 degrees C on human fibroblasts, as well as on other cell types, a recycling process maintains a constant number of coated pits on the cell surface. In this paper, we explore implications for receptor aggregation and internalization of the two types of recycling models that have been proposed for the maintenance of the coated pit concentration. In one model, coated pits alternate between accessible and inaccessible states at fixed locations on the cell surface, while in the other model, coated pits recycle to random locations on the cell surface. We consider receptors that are randomly inserted in the membrane, move by pure diffusion with diffusion coefficient D, and are instantly and irreversibly trapped when they reach a coated pit boundary (the diffusion limit). For such receptors, we calculate for each of the two models: the mean time tau to reach a coated pit, the forward rate constant k+ for the interaction of a receptor with a coated pit, and the fraction phi of receptors aggregated in coated pits. We show that for the parameters that characterize coated pits on human fibroblasts, the way in which coated pits return to the surface has a negligible effect on the values of tau, k+, and phi for mobile receptors, D greater than or equal to 1.0 X 10(-11) cm2/s, but has a substantial effect for "immobile" receptors, D much less than 1 X 10(-11) cm2/s. We present numerical examples to show that it may be possible to distinguish between these models if one can monitor slowly diffusing receptors (D less than 1 X 10(-11) cm2/s) on cells whose coated pits have relatively short lifetimes (less than or equal to 1 min). Finally, we show that for the low-density lipoprotein (LDL) receptor on human fibroblasts (D = 4.5 X 10(-11) cm2/s), the predicted and observed values of K+ and phi are in close agreement. Therefore, even for slowly diffusing LDL receptor, unaided diffusion as the transport mechanism of receptors to coated pits is consistent with measured rates of LDL internalization.  相似文献   

4.
Earlier studies have shown that transferrin binds to specific receptors on the reticulocyte surface, clusters in coated pits and is then internalized via endocytic vesicles. Guinea-pig reticulocytes also have specific receptors for ferritin. In this paper ferritin and transferrin endocytosis by guinea-pig reticulocytes was studied by electron microscopy using the natural electron density of ferritin and colloidal gold-transferrin (AuTf). At 4 degrees C both ligands bound to the cell surface. At 37 degrees C progressive uptake occurred by endocytosis. AuTf and ferritin clustered in the same coated pits and small intracellular vesicles. After 60 min incubations the ligands colocalized to large multivesicular endosomes (MVE), still membrane-bound. MVE subsequently fused with the plasma membrane and released AuTf, ferritin and inclusions by exocytosis. All endocytic structures labelled with AuTf contained ferritin, but 23 to 35% of ferritin-labelled endocytic structures contained no AuTf. These data suggest that ferritin and transferrin are internalized through the same pathway involving receptors, coated pits and vesicles, but that these proteins are recycled only partly in common.  相似文献   

5.
Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline- inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles failed to bud in cells overexpressing mutant dynamin so that endocytosis via both transferrin (Tfn) and EGF receptors was potently inhibited. Coated pit assembly, invagination, and the recruitment of receptors into coated pits were unaffected. Other vesicular transport pathways, including Tfn receptor recycling, Tfn receptor biosynthesis, and cathepsin D transport to lysosomes via Golgi-derived coated vesicles, were unaffected. Bulk fluid-phase uptake also continued at the same initial rates as wild type. EM immunolocalization showed that membrane-bound dynamin was specifically associated with clathrin-coated pits on the plasma membrane. Dynamin was also associated with isolated coated vesicles, suggesting that it plays a role in vesicle budding. Like the Drosophila shibire mutant, HeLa cells overexpressing mutant dynamin accumulated long tubules, many of which remained connected to the plasma membrane. We conclude that dynamin is specifically required for endocytic coated vesicle formation, and that its GTP binding and hydrolysis activities are required to form constricted coated pits and, subsequently, for coated vesicle budding.  相似文献   

6.
We consider the lateral diffusion of receptors, or other membrane proteins, in the outer membranes of certain cells, and their capture by coated pits. It is shown, for the case in which the coated pits are in fixed random positions, that the long-time decay of the total number of uncaptured proteins is of the fractional exponential form, N(t) = N0 exp [-square root of (t/tau)], and not of the pure exponential form, N(t) = N0 exp(-t/tau), which is usually assumed.  相似文献   

7.
When human erythroleukemic cells are induced to differentiate, they produce globin and redistribute glycophorin and spectrin to one pole of the cell. This process was accompanied by an alteration in the clathrin-coated pits at the cell surface. In nondifferentiating cells, receptors for Concanavalin A have been shown, using electron microscopy, to be concentrated into coated pits and rapidly internalized. Glycophorin was also internalized via coated pits, but was not greatly concentrated into these portions of the surface membrane. Ligands attached to glycophorin were, therefore, cleared from the cell surface more slowly than Concanavalin A. In nondifferentiating cells, immunoelectron microscopy showed that spectrin is largely excluded from coated pits. After erythroid differentiation proceeded for several days, glycophorin was totally excluded from the coated pits along with spectrin. This did not reflect a general cessation of endocytosis, however, because Concanavalin A receptors continued to be internalized. It is possible that the specific exclusion of glycophorin from coated pits is part of the remodeling process that occurs when the precursor cell membrane differentiates into that of the mature erythrocyte.  相似文献   

8.
Summary Using a direct conjugate of urokinase and ferritin, the binding has been followed at the plasma membrane and the internalization of urokinase into BALB/C-3T3 fibroblasts, cultured in plasminogen-free conditions. At 0° C, the conjugate was observed bound on both coated and uncoated cell surface regions as singlets, and small and large clusters. No binding was observed in the presence of excess native urokinase. The binding was impaired by preincubation of the conjugate with a competitive inhibitor of the catalytic site, suggesting an interaction between the receptor and the catalytic site of the enzyme.Within 1 min at 37° C, urokinase clustered on coated regions of the plasma membrane. At 5 min after warming, ferritin was found on deeply indented coated pits and in both coated and uncoated vesicles close to the cell surface. By 10 min at 37° C, ferritin particles were present in uncoated endosomes and in multivesicular bodies in the Golgi area. Within 10 min, the receptors on the surface strongly decreased. New receptors were observed on the membrane after 20 min at 37° C. At this time, ferritin was observed both in endosomes or multivesicular bodies and in vesicles close to the plasma membrane.  相似文献   

9.
We have formulated a kinetic model for the primary steps that occur at the cell membrane during receptor-mediated endocytosis. This model includes the diffusion of receptor molecules, the binding of receptors to coated pits, the loss of coated pits by invagination, and random reinsertion of receptors and coated pits. Using the mechanistic statistical theory of nonequilibrium thermodynamics, we employ this mechanism to calculate the two-dimensional radial distribution of receptors around coated pits at steady state. From this we obtain an equation that describes the effect of receptor diffusion on the rate of binding to coated pits. Our equation does not assume that ligand binding is instantaneous and can be used to assess the effect of diffusion on the binding rate. Using experimental data for low density lipoprotein receptors on fibroblast cells, we conclude that the effect of diffusion on the binding of these receptors to coated pits is no more than 84% diffusion controlled. This corresponds to a dissociation rate constant for receptors on coated pits (k-) that is much less than the rate constant for invagination of the pits (lambda = 3.3 X 10(-3)/s) and a correlation length for the radial distribution function of six times the radius of a coated pit. Although the existing experimental data are compatible with any value of k-, we obtain a lower bound for the value of the binding constant (k+) of 2.3 X 10(-2)(micron)2/s. Comparison of the predicted radial distributions with experiment should provide a clear indication of the effect of diffusion on k+.  相似文献   

10.
In this investigation the membrane-perturbing effect of filipin, a polyene antibiotic which reacts specifically with cholesterol or cholesterol-like compounds in cell membranes, has been exploited to study the distribution of coated pits in cultured human skin fibroblasts. The coated pits, showing no filipin-cholesterol complexes, occurred singly or in clusters without apparent localization of either type to a particular region of the fibroblast membrane. Colloidal gold, conjugated to low-density lipoprotein, has proven to be an excellent marker, allowing the localization of low-density lipoprotein receptors on the surface of cultured cells. A pattern similar to that for the coated pits in the plasma membrane fracture faces was observed in the distribution of gold-low-density lipoprotein conjugates in surface replicas, indicating that the low-density lipoprotein receptors are associated with these coated pits. It was shown that there is an apparent heterogeneity in the distribution of low-density lipoprotein receptors, from cell to cell and even among different areas of the same cell membrane. The binding capacity for gold-low-density lipoprotein complexes, as represented by the extent of surface labeling, was directly related to the cell variety within the culture or to the particular experimental procedure. The observation of differences in the distribution of gold-low-density lipoprotein conjugates, even among adjacent coated pits, provides evidence for various stages of activity of the low-density lipoprotein receptors corresponding to incorporation, mobility, and internalization.  相似文献   

11.
Quantitative ultrastructural and biochemical methods have allowed us to obtain a coherent set of data on the internalization efficiency of the transferrin receptor (TfR). In confluent cell cultures we find that (1) the initial internalization rate of transferrin is approximately 10% per minute, and (2) around 10% of cell-surface TfRs are present in coated pits. From these data a lifetime of coated pits of ca. 1 min is derived. Furthermore, we show that coated pits constitute 1.1-1.4% of the plasma membrane area in confluent cell cultures. Thus, the TfR is concentrated six- to ninefold in coated pits compared to resident plasma membrane proteins. Moreover, we show that the concentration of TfRs in coated pits is cell density dependent, since only around 5% of the receptors are present in coated pits in low-density cultures. Correspondingly, the internalization of TfRs in high-density cell cultures is roughly twice as efficient as that in low-density cell cultures. The reduced TfR internalization efficiency at low cell density is accounted for by a concomitant decrease to 0.55% in the relative surface area occupied by coated pits.  相似文献   

12.
An isolated perfused liver system was used to study the distribution of asialoglycoprotein (ASGP) binding sites on rat hepatocyte cell surfaces. The number of surface receptors was quantitated by monitoring clearance of 125I-labeled ligands from the perfusate medium under two conditions that blocked their internalization: low temperature (less than 5 degrees C) or brief formaldehyde fixation. The cell surface distribution of binding sites was visualized in the electron microscope with either asialoorosomucoid covalently coupled to horseradish peroxidase (ASOR-HRP) or lactosaminated ferritin (Lac-Fer), both of which were bound with similar kinetics and to similar extents as ASOR itself. At low temperature or after prefixation, ASGP binding sites were present over much of the sinusoidal cell surface, but were concentrated most heavily over coated pits. Quantitation of ligand distribution at 4 degrees C with Lac-Fer gave an approximately 70-fold greater density of ferritin particles over coated membrane than over uncoated regions. We obtained no evidence for gradual movement of ASGP receptors into or out of coated pits within the time-course of our experiments. Finally, the number and distribution of cell surface binding sites was unaffected by previous exposure to ASOR or by inhibition of endocytic vesicle-lysosome fusion and ASOR degradation at 16 degrees C.  相似文献   

13.
Human epithelioid carcinoma A-431 cells are known to express unusually large numbers of receptors for the polypeptide hormone epidermal growth factor. The current studies demonstrate that this cell line also expresses 5- to 10-fold more low density lipoprotein (LDL) receptors per cell than either human fibroblasts or Chinese hamster ovary (CHO) cells. As visualized with an LDL-ferritin conjugate, the LDL receptors in A-431 cells appeared in clusters that were distributed uniformly over the cell surface, occurring over flat regions of the membrane as well as over the abundant surface extensions. Only 4% of the LDL receptors were located in coated pits. The LDL receptors in A-431 cells showed the same affinity and specificity as the LDL receptors in human fibroblasts and other cell types. In addition, they were subject to feedback regulation by sterols in the same manner as the LDL receptors in other cells. However, in contrast to other cell types in which the receptor-bound LDL is internalized with high efficiency, in the A-431 cells only a small fraction of the receptor-bound LDL entered the cell. In CHO cells approximately 66% of the LDL receptors were located over coated regions of membrane, and the efficiency of LDL internalization was correspondingly 10-fold higher than in A-431 cells. These findings support the concept that the rate of LDL internalization is proportional to the number of LDL receptors in coated pits and that the inefficiency of internalization in the A-431 cells is caused by a limitation in the ability of these cells to incorporate their LDL receptors into coated pits.  相似文献   

14.
《The Journal of cell biology》1996,132(6):1025-1036
The fundamental mechanisms by which receptors once targeted for endocytosis are found in coated pits is an important yet unresolved question. Specifically, are activated receptors simply trapped on encountering preexisting coated pits, subsequently being rapidly internalized? Or do the receptors themselves, by active recruitment, gather soluble coat and cytosolic components and initiate the rapid assembly of new coated pits that then mediate their internalization? To explore this question, we studied the relationship between activation of IgE-bound high affinity Fc receptors (FCepsilonRI) and coated pit formation. Because these receptors are rapidly internalized via clathrin-coated pits only when cross-linked by the binding of multivalent antigens, we were able to separate activation from internalization by using an immobilized antigen. The FCepsilonRIs, initially uniformly distributed over the cell surface. relocalized and aggregated on the antigen-exposed membrane. The process was specific for the antigen, and temperature- and time-dependent. This stimulation initiated a cascade of cellular responses typical of FCepsilonRI signaling including membrane ruffling, cytoskeletal rearrangements, and, in the presence of Ca2+, exocytosis. Despite these responses, no change in coated pit disposition or in the distribution of clathrin and assembly protein AP2 was detected, as monitored by immunoblotting and by quantitative (vertical sectioning) confocal microscopy analysis of immunofluorescently stained cells. Specifically, there was no decrease in the density of clathrin-coated pits in regions of the cell membrane not in contact with the antigen, and there was no apparent increase in clathrin-coated pits in proximity to stimulated FCepsilonRI receptors as would have been expected if the receptors were inducing formation of new pits by active recruitment. These results indicate that de novo formation of clathrin-coated pits is not a prerequisite for rapid internalization or a direct response to stimulation of FCepsilonRI receptors. Therefore, increases in coated pits reported to occur in response to activation of some signaling receptors must be consequences of the signal transduction processes, rather than strictly serving the purpose of the internalization of the receptors.  相似文献   

15.
Monomeric ferritin-insulin and high-resolution electron microscopic analysis were used to study the organization, distribution, and movement of insulin receptors on differentiated 3T3-L1 adipocytes. Analysis of the binding to prefixed cells showed that insulin initially occupied single and paired receptors preferentially located on microvilli. The majority of receptors (60%) were found as single molecules and 30% were pairs. In 1 min at 37% C, 50% of the receptors on nonfixed cells were found on the intervillous plasma membrane and more than 70% of the total receptors had microaggregated. By 30 min only 7% of the receptors were single or paired molecules on microvilli. The majority were on the intervillous membrane, with 95% of those receptors in groups. The receptor groups on the intervillous plasma membrane could be found in both noncoated invaginations and coated pits. The concentration of occupied receptors in the noncoated invaginations and the coated pits was similar; however, ten times more noncoated invaginations than coated pits contained occupied insulin receptors. The observations in this study contrast with those reported on rat adipocytes using identical techniques (Jarett and Smith, 1977). Insulin receptors on adipocytes were initially grouped and randomly distributed over the entire cell surface and did not microaggregate into larger groups. Insulin receptors on rat adipocytes were found in noncoated invaginations but were excluded from the coated pits. The differences in the organization and behavior of the insulin receptor between rat and 3T3-L1 adipocytes suggest that the mechanisms regulating the initial organization of insulin receptors and the aggregation of occupied receptors may be controlled by tissue-specific processes. Since both of these cell types are equally insulin sensitive, the differences in the initial organization and distribution of the insulin receptors on the cell surface may not be related to the sensitivity or biological responsiveness of these cells to insulin but may affect other processes such as receptor regulation and internalization. On the other hand, the microaggregates of occupied receptors on both cell types may relate to biological responsiveness.  相似文献   

16.
Clathrin/AP2-coated vesicles are the principal endocytic carriers originating at the plasma membrane. In the experiments reported here, we used spinning-disk confocal and lattice light-sheet microscopy to study the assembly dynamics of coated pits on the dorsal and ventral membranes of migrating U373 glioblastoma cells stably expressing AP2 tagged with enhanced green fluorescence (AP2-EGFP) and on lateral protrusions from immobile SUM159 breast carcinoma cells, gene-edited to express AP2-EGFP. On U373 cells, coated pits initiated on the dorsal membrane at the front of the lamellipodium and at the approximate boundary between the lamellipodium and lamella and continued to grow as they were swept back toward the cell body; coated pits were absent from the corresponding ventral membrane. We observed a similar dorsal/ventral asymmetry on membrane protrusions from SUM159 cells. Stationary coated pits formed and budded on the remainder of the dorsal and ventral surfaces of both types of cells. These observations support a previously proposed model that invokes net membrane deposition at the leading edge due to an imbalance between the endocytic and exocytic membrane flow at the front of a migrating cell.  相似文献   

17.
In this study image correlation spectroscopy was used to demonstrate the presence of two populations of clathrin in situ, on intact cells. In the periphery of the cell approximately 35% of the clathrin triskelions are free within the cytosol while approximately 65% are in large aggregates, presumably coated pits. Although endocytosis is inhibited at low temperature, free clathrin triskelions are still present and small AP-2 aggregates (of approximately 20 proteins), or coated pit nucleation sites, are still observed. Following hypertonic treatment, or cytoplasmic acidification, free clathrin triskelions within the cytosol are depleted and all of the clathrin becomes associated with the membrane. Under these conditions coated pit associated AP-2 remains while the smaller AP-2 aggregates, or coated pit nucleation sites, dissociate. This indicates that the stabilization of AP-2 coated pit nucleation sites requires the presence of free clathrin triskelions within the cytosol. Furthermore, this indicates that free clathrin is required for the early stages of coated pit formation and presumably the continuation of the clathrin-mediated endocytic process. We also provide indirect evidence that AP-2 binding to the membrane in coated pit nucleation sites may be regulated in part by binding to internalization-competent membrane receptors.  相似文献   

18.
Recent experiments suggest that low density lipoprotein (LDL) receptors on human fibroblasts are not inserted into the plasma membrane uniformly, as earlier experiments indicated, but are inserted into specialized regions, called plaques, where coated pits form. If the consequent reduction in the time required for LDL receptors to diffuse to coated pits were significant, this could alter conclusions drawn from previous calculations based on the assumption that LDL receptors are inserted uniformly. In particular, the conclusion could be wrong that diffusion of LDL receptors to coated pits is the rate limiting step in the interaction of cell surface LDL receptors with coated pits. Here we calculate the extent of the reduction in mean travel time of an LDL receptor to a coated pit, as a function of the plaque radius. We find that only if LDL receptor insertion is limited to a very small portion of the plasma membrane near coated pit sites is there a substantial decrease in the average time it would take an LDL receptor to diffuse to a coated pit. In order for preferential insertion of LDL receptors into plaques to cut the mean receptor travel time in half, plaques would have to take up no more than 10% of the cell surface area; to reduce the travel time by a factor of 10 plaques would have to cover only 2% of the cell surface, approximately twice the area covered by coated pits at 37°C.  相似文献   

19.
Summary The endocytotic process in cultured human RPE cells was observed after 1 min, 20 min, and 2 h incubation with cationized ferritin. Within 1 min the ferritin particles were seen to attach to the cell membrane, especially between microvilli. Uncoated and coated pits could be recognized on the cell membranes, and uncoated and coated endocytotic vesicles were found in the cytoplasm after 20 min of incubation. These vesicles were surrounded by abundant microfilaments and had no visible membranes. Loss of membrane may be an initial step in the process of developing into the irregular clumps of ferritin particles found inside the plasma membrane. With time, more irregular clumps of ferritin, smaller than the particles introduced during incubation, appeared just beneath the cell membrane. Lysosomes were adjacent to the clumps of ferritin particles associated with microtobules and finally degraded these particles. The phagolysosomes containing many particles were surrounded by many microtubules. Small ferritin particles surrounded but had not entered the rough endoplasmic reticulums, and no particles were seen either around or in the Golgi apparatus. Presented at the 7th International Congress of Eye Research, Nagoya, Japan, 27 September 1986.  相似文献   

20.
We have examined nucleated erythrocytes of frog and turkey for the presence of clathrin-coated structures using electron microscopy and immunocytochemistry. By electron microscopy, coated pits were found on the plasma membrane of peripheral blood erythrocytes of both species. These structures had an appearance similar to coated pits seen in non-erythroid mammalian cells. Using immunofluorescence with anti-(bovine) clathrin antibody, erythrocytes of both species showed punctate membrane fluorescence similar to the pattern of coated pits seen in other cells. By both methods, frog erythrocytes showed considerable heterogeneity, such that only about 50% of the cells showed significant numbers of coated pits, usually fewer than 20-50 per cell. In contrast, the vast majority of turkey erythrocytes showed no detectable coated pits, but occasional cells (less than 10%) showed large numbers of coated structures. These results suggest that a functional endocytic system may be present in a subpopulation of these nucleated erythrocytes. These findings may be of significance in understanding the ligand-induced loss of some receptors from the surface of these cells, and may serve as an indication of morphologic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号