首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Gene》1996,173(1):39-44
Aequorea victoria green fluorescent protein (GFP) is a promising fluorescent marker which is active in a diverse array of prokaryotic and eukaryotic organisms. A key feature underlying the versatility of GFP is its capacity to undergo heterocyclic chromophore formation by cyclization of a tripeptide present in its primary sequence and thereby acquiring fluorescent activity in a variety of intracellular environments. In order to define further the primary structure requirements for chromophore formation and fluorescence in GFP, a series of N- and C-terminal GFP deletion variant expression vectors were created using the polymerase chain reaction. Scanning spectrofluorometric analyses of crude soluble protein extracts derived from eleven GFP expression constructs revealed that amino acid (aa) residues 2–232, of a total of 238 aa in the native protein, were required for the characteristic emission and absorption spectra of native GFP. Heterocyclic chromophore formation was assayed by comparing the absorption spectrum of GFP deletion variants over the 300–500-nm range to the absorption spectra of full-length GFP and GFP deletion variants missing the chromophore substrate domain from the primary sequence. GFP deletion variants lacking fluorescent activity showed no evidence of heterocyclic ring structure formation when the soluble extracts of their bacterial expression hosts were studied at pH 7.9. These observations suggest that the primary structure requirements for the fluorescent activity of GFP are relatively extensive and are compatible with the view that much of the primary structure serves an autocatalytic function.  相似文献   

2.
3.
The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested.  相似文献   

4.
Green fluorescent protein (GFP) from a jellyfish, Aequorea victoria, and its mutants are widely used in biomedical studies as fluorescent markers. In spite of the enormous efforts of academia and industry toward generating its red fluorescent mutants, no GFP variants with emission maximum at more than 529 nm have been developed during the 15 years since its cloning. Here, we used a new strategy of molecular evolution aimed at generating a red-emitting mutant of GFP. As a result, we have succeeded in producing the first GFP mutant that substantially matures to the red-emitting state with excitation and emission maxima at 555 and 585 nm, respectively. A novel, nonoxidative mechanism for formation of the red chromophore in this mutant that includes a dehydration of the Ser65 side chain has been proposed. Model experiments showed that the novel dual-color GFP mutant with green and red emission is suitable for multicolor flow cytometry as an additional color since it is clearly separable from both green and red fluorescent tags.  相似文献   

5.
The fluorescence spectral properties of recombinant green fluorescent protein (rGFP) were examined with one- and two-photon excitations using femtosecond pulses from a Ti:sapphire laser. Intensity-dependent properties of the two-photon-induced fluorescence from rGFP excited by an 800-nm, 100-fs laser beam were reported, and the two-photon excitation cross section of rGFP was measured at 800 nm as about 160 x 10(-50) cm(4)s/photon. The possible excited-state proton transfer between two electronic states at about 400 nm in protonated (RH) species and 478 nm in deprotonated (R(-)) species in rGFP was confirmed by fluorescence and fluorescence excitation anisotropy spectra. A subelectronic state (or vibronic progression) at about 420 nm in RH species was identified, which was relatively stable and not involved in the excited state proton transfer in rGFP upon irradiation.  相似文献   

6.
7.
Pal PP  Bae JH  Azim MK  Hess P  Friedrich R  Huber R  Moroder L  Budisa N 《Biochemistry》2005,44(10):3663-3672
Global replacements of tyrosine by 2- and 3-fluorotyrosine in "enhanced green" and "enhanced yellow" mutants of Aequorea victoria green fluorescent proteins (avGFPs) provided protein variants with novel biophysical properties. While crystallographic and modeled structures of these proteins are indistinguishable from those of their native counterparts (i.e., they are perfectly isomorphous), there are considerable differences in their spectroscopic properties. The fluorine being an integral part of the avGFP chromophore induces changes in the titration curves, variations in the intensity of the absorbance and fluorescence, and spectral shifts in the emission maxima. Furthermore, targeted fluorination in close proximity to the fluorinated chromophore yielded additional variants with considerably enhanced spectral changes. These unique spectral properties are intrinsic features of the fluorinated avGFPs, in the context of the rigid chromophore-microenvironment interactions. The availability of the isomorpohous crystal structures of fluorinated avGFPs allowed mapping of novel, unusual interaction distances created by the presence of fluorine atoms. In addition, fluorine atoms in the ortho position of the chromophore tyrosyl moiety exhibit a single conformation, while in the meta position two conformer states were observed in the crystalline state. Such global replacements in chromophores of avGFPs and similar proteins result in "atomic mutations" (i.e., H --> F replacements) in the structures, offering unprecedented opportunities to understand and manipulate the relationships between protein structure and spectroscopic properties.  相似文献   

8.
The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer duration time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.  相似文献   

9.
10.
11.
12.
Bimolecular fluorescence complementation (BiFC) has been widely used in the analysis of protein-protein interactions (PPIs) in recent years. There are many notable advantages of BiFC such as convenience and direct visualization of PPI in cells. However, BiFC has one common limitation: the separated non-fluorescent fragments can be spontaneously self-assembled into an intact protein, which leads to false-positive results. In this study, a pair of complementary fragments (sfGFPN and sfGFPC) was constructed by splitting superfolder GFP (sfGFP) between the 214 and 215 amino acid residue, and sfGFPC was mutated by site-directed gene mutagenesis to decrease the signal of negative control. Our results showed that mutations in sfGFPC (sfGFPC(m12)) can effectively decrease the signal of negative control. Thus, we provide an improved BiFC tool for the analysis of PPI. Further, since the self-assembly problem is a common shortcoming for application of BiFC, our research provides a feasible strategy for other BiFC candidate proteins with the same problem.  相似文献   

13.
We have investigated properties relevant to quantitative imaging in living cells of five green fluorescent protein (GFP) variants that have been used extensively or are potentially useful. We measured the extinction coefficients, quantum yields, pH effects, photobleaching effects, and temperature-dependent chromophore formation of wtGFP, alphaGFP (F99S/M153T/V163A), S65T, EGFP (F64L/S65T), and a blue-shifted variant, EBFP (F64L/S65T/Y66H/Y145F). Absorbance and fluorescence spectroscopy showed little difference between the extinction coefficients and quantum yields of wtGFP and alphaGFP. In contrast, S65T and EGFP extinction coefficients made them both approximately 6-fold brighter than wtGFP when excited at 488 nm, and EBFP absorbed more strongly than the wtGFP when excited in the near-UV wavelength region, although it had a much lower quantum efficiency. When excited at 488 nm, the GFPs were all more resistant to photobleaching than fluorescein. However, the wtGFP and alphaGFP photobleaching patterns showed initial increases in fluorescence emission caused by photoconversion of the protein chromophore. The wtGFP fluorescence decreased more quickly when excited at 395 nm than 488 nm, but it was still more photostable than the EBFP when excited at this wavelength. The wtGFP and alphaGFP were quite stable over a broad pH range, but fluorescence of the other variants decreased rapidly below pH 7. When expressed in bacteria, chromophore formation in wtGFP and S65T was found to be less efficient at 37 degrees C than at 28 degrees C, but the other three variants showed little differences between 37 degrees C and 28 degrees C. In conclusion, no single GFP variant is ideal for every application, but each one offers advantages and disadvantages for quantitative imaging in living cells.  相似文献   

14.
《Gene》1996,173(1):59-65
Horizontal transfer of the TOL plasmid was examined in Pseudomonas putida (Pp) KT2442 micro-colonies on semi-solid agar surfaces. Horizontal gene transfer is usually studied in large populations where all information is based on average estimates of the transfer events in the entire population. We have used the green fluorescent protein (GFP) from the jellyfish Aequorea victoria as a plasmid marker, in combination with single-cell observations. This provided hitherto unknown details on the distribution of cells active in conjugation. In the present study, donor cells containing the gfp gene expressed from the bacteriophage T7 Φ10 promoter on the TOL plasmid, and recipient cells expressing the corresponding phage RNA polymerase allowed us to monitor the occurrence of ex-conjugants as green fluorescent cells upon illumination with blue light (470–490 nm). Further, the recipients were labeled with the luxAB genes to distinguish micro-colonies of donor cells from recipient cells. We conclude that conjugal plasmid transfer in Pp KT2442 cells on semi-solid surfaces occurs mainly during a short period of time after the initial contact of donors and recipients, indicating that spread of the TOL plasmid is limited in static, but viable cultures.  相似文献   

15.
16.
Recombinant human fetal brain protein L-isoaspartyl O-methyltransferase, EC 2.1.1.77, was crystallized in PEG 8000 with adenosine homocysteine by a macroseeding technique. The space group was P21 with a = 47.4 Å, b = 53.9 Å, c = 48.7 Å and β = 116.4° for cryofrozen crystals at 90 K. The crystals diffracted to 2.1 Å and have one molecule per asymmetric unit. Proteins 28:457–460, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Rosell FI  Boxer SG 《Biochemistry》2003,42(1):177-183
Polarized absorption spectra of orthorhombic crystals of wild-type green fluorescent protein (GFP) were measured between 350 and 520 nm to obtain information on the directions of the electronic transition dipole moments ((-->)m) of the chromophore relative to the molecular axes. The transition dipole moment orientation is a basic spectroscopic parameter of relevance to biologists when interpreting F?rster-type fluorescence resonance energy transfer data and for comparing absorbance and fluorescence spectra of GFP with quantum chemical calculations. Maximal extinction was obtained throughout the spectrum when the polarization direction of the electric vector of incident light was parallel to the c-axis of the crystal. The transition dipole moments were assumed to be parallel to the plane of the chromophore. With this assumption and the measured dichroic ratios in the crystals, the transition dipole moments associated with the neutral (lambda(max) = 398 nm) and anionic (lambda(max) = 478 nm) forms of the chromophore were found to subtend angles of approximately 26 degrees and 13 degrees (counterclockwise), respectively, with the vector that joins the phenolic and imidazolinone oxygen atoms of the chromophore.  相似文献   

18.
A procedure is described by which the information available from nanosecond time-resolved fluorescence measurements can be used to study rates of reactions taking place on time scales of seconds to hours. A pulse fluorometer was modified so as to obtain a series of short sequential data collections which were rapidly stored on computer disk files. As an application of this new methodology, the unfolding of horse liver alcohol dehydrogenase under acid conditions was monitored by changes in the decay parameters of the intrinsic fluorescence. Although the individual decay curves each had relatively few counts (330 to 160 counts at the peak), a series of decay curves obtained as a function of time could be analyzed in terms of a biexponential function. It was found that the decrease in steady-state fluorescence could be explained most simply by a decrease in the amplitude associated with the longer of the two decay constants.  相似文献   

19.
The expanded genetic code in combination with site-directed mutagenesis was used to probe spectroscopic and structural roles of tryptophan (Trp) residues in Aequorea victoria green fluorescent proteins (avGFPs). Nine different halogen-, chalcogen-, and methyl-containing Trp isosteric analogues and surrogates were incorporated into avGFPs containing indole moieties in, and outside of, the chromophore, by the use of the selective pressure incorporation method. Such isosteric replacements introduced minimal local geometry changes in indole moieties, often to the level of single atomic exchange ('atomic mutation') and do not affect three-dimensional structures of avGFPs but induce changes in spectral properties. Our approach offers a new platform to re-evaluate issues like resonance transfer, mechanisms of chromophore formation and maturation, as well as the importance of local geometry and weak sulphur-aromatic interactions for avGFP spectral properties and structural stability. The library of novel tailor-made avGFP mutants and variants generated in this work has demonstrated not only the potentials of the expanded genetic code to study spectroscopic functions, but also a new approach to generate tailor-made proteins with interesting and useful spectral properties.  相似文献   

20.
Many marine organisms are luminescent. The proteins that produce the light include a primary light producer (aequorin or luciferase) and often a secondary photoprotein that red shifts the light for better penetration in the ocean. Green fluorescent protein is one such secondary protein. It is remarkable in that it autocatalyzes the formation of its own fluorophore and thus can be expressed in variety of organisms in its fluorescent form. The recent determination of its 3D structure and other physical characterizations are revealing its molecular mechanism of action  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号