首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Twenty different streptomycete isolates were obtained from soils of southeast Serbia. Five isolates identified as Streptomyces hygroscopicus (SH100, SH101, SH102, SH103, and SH104) showed strong activity against Botrytis cinerea, a parasite found in domestic vines. These isolates were extensively studied for their in vitro antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, yeasts and fungi, and also antiviral activity against Herpes simplex. The results indicated that the obtained isolates were highly active against Botrytis cinerea, Candida albicans, and Herpes simplex, with an inhibition zone of approximately 31 mm. The structure of the bioactive components was determined using elemental analysis, as well as UV/VIS, FTIR, and TLC.  相似文献   

2.
AIMS: To devise and evaluate a strategy for isolating members of the Streptomyces violaceusniger phenotypic cluster, which are known to be a promising source of bioactive metabolites. METHODS AND RESULTS: The treatment of four soil samples with 1.5% phenol (30 degrees C, 30 min) prior to inoculation on humic acid-vitamin (HV) agar eliminated most of the streptomycetes and other bacterial populations. The surviving streptomycetes on the HV isolation plates were subcultured, and species-group identification was made according to the probabilistic identification system of Williams et al. (1989). Of the 133 streptomycetes subcultured, 102 (77%), were assigned to the S. violaceusniger cluster. A test with an overlay technique revealed that all of these S. violaceusniger-cluster isolates had broad antimicrobial spectra, as they inhibited the growth of all test Gram-positive bacteria, yeasts and filamentous fungi. Antitumour activity against colon carcinoma cells was found among 68 or 67%, of these S. violaceusniger-cluster isolates, following growth in submerged culture. CONCLUSIONS: Chemical pretreatment of soil samples with phenol reduces the growth of ubiquitous Streptomyces species, thereby facilitating the recovery of less-abundant S. violaceusniger-cluster strains that are characterized by high antimicrobial and antitumour activities. SIGNIFICANCE AND IMPACT OF THE STUDY: The development and application of new methodologies with which to selectively isolate rare, bioactive streptomycete groups is important for discovering novel secondary metabolites with bioactive properties.  相似文献   

3.
A series of novel aliphatic sulfonamide derivatives (1-7) were synthesized and characterized by elemental analyses, FT-IR, (1)H NMR, (13)C NMR and LC-MS techniques. All the synthesized compounds were evaluated in vitro as antimicrobial agents against representative strains of Gram-positive (Staphylococcus aureus ATCC 25953, Bacillus cereus ATCC 6633 and Listeria monocytogenes ATCC Li6 (isolate), Gram-negative bacteria (Escherichia coli ATCC 11230) and antifungal agent against Candida albicans (clinical isolate) by both disc diffusion and minimal inhibition concentration (MIC) methods. All these bacteria and fungus studied were screened against some antibiotics to compare with our chemicals' zone diameters. Our aliphatic sulfonamides have highest powerful antibacterial activity for Gram-negative bacteria than Gram-positive bacteria and antibacterial activity decreases as the length of the carbon chain increases.  相似文献   

4.
Twenty different streptomycete isolates were obtained from soils of southeast Serbia. Five isolates identified as Streptomyces hygroscopicus (SH100, SH101, SH102, SH103, and SH104) showed strong activity against Botrytis cinerea, a parasite found in domestic vines. These isolates were extensively studied for their in vitro antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, yeasts and fungi, and also antiviral activity against Herpes simplex. The results indicated that the obtained isolates were highly active against Botrytis cinerea, Candida albicans, and Herpes simplex, with an inhibition zone at ≥31 mm. The structure of the bioactive components was determined using elemental analysis, as well as UV/VIS, FTIR, and TLC.  相似文献   

5.
Thirty soil-isolates of Streptomyces were analyzed to determine their antagonism against plant-pathogenic fungi including Fusarium oxysporum, Pythium aristosporum, Colletotrichum gossypii, and Rhizoctonia solani. Seven isolates showed antifungal activity against one or more strain of the tested fungi. Based on the 16S rDNA sequence analysis, these isolates were identified as Streptomyces tendae (YH3), S. griseus (YH8), S. variabilis (YH21), S. endus (YH24), S. violaceusniger (YH27A), S. endus (YH27B), and S. griseus (YH27C). The identity percentages ranged from 98 to 100%. Although some isolates belonged to the same species, there were many differences in their cultural and morphological characteristics. Six isolates out of seven showed chitinase activity according to a chitinolytic activity test and on colloidal chitin agar plates. Based on the conserved regions among the family 19 chitinase genes of Streptomyces sp. two primers were used for detection of the chitinase (chiC) gene in the six isolates. A DNA fragment of 1.4 kb was observed only for the isolates YH8, YH27A, and YH27C. In conclusion, six Streptomyces strains with potential chitinolytic activity were identified from the local environment in Taif City, Saudi Arabia. Of these isolates, three belong to family 19 chitinases. To our knowledge, this is the first reported presence of a chiC gene in S. violaceusniger YH27A.  相似文献   

6.
A biological screening of activity against Gram-positive and Gram-negative bacteria, yeasts, and fungi of crude extracts from Wedelia trilobata is reported. The n-hexane extract showed antibacterial activity against Bacillus subtilis, Mycobacterium smegmatis, Staphylococcus aureus, and Staphylococcus epidermidis (Gram-positive bacteria); along with Proteus vulgaris, Pseudomonas aeruginosa, Salmonella group C, Salmonella paratyphi, and Shigella sonnei (Gram-negative bacteria). The ethyl acetate extract was active only against Salmonella group C; and the aqueous extract was inactive against the tested bacteria. None of the tested extracts showed biological activity against the yeasts (Candida albicans, Candida tropicalis, Rhodotorula rubra) or the fungi (Aspergillus flavus, Aspergillus niger, Mucor sp., Trichophyton rubrum).  相似文献   

7.
对从土壤微生物中筛选到的放线菌菌株1356进行分类学和抗菌活性的研究。采用多相分类法,对菌株的形态特征、培养特征、生理生化特性及16 SrRNA基因序列进行了研究。结果表明:该菌株的形态特征、培养特征、生理生化特性为链霉菌属的特征;16S rDNA序列分析及系统进化树分析表明其序列与灰色产色链霉菌的同源性最高;该菌株的发酵产物对番茄叶霉、白色念珠菌、小麦根腐菌等17种真菌均有不同程度的抑制作用。放线菌1356菌株具有广谱抗真菌活性而对细菌无作用;初步确定其为链霉菌属灰色产色链霉菌的一个亚种。  相似文献   

8.
Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active againstFusarium oxysporum f.sp.lycopersici (the cause ofFusarium wilt), 18 againstVerticillium albo-atrum (the cause ofVerticillium wilt), and 18 againstAlternaria solani (the cause of early blight). In liquid media, 14 isolates antagonizedPseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonizedClavibacter michiganensis ssp.michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to beStreptomyces pulcher, S. canescens (syn.S. albidoflavus) andS. citreofluorescens (syn.S. anulatus). The antagonistic activities ofS. pulcher andS. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.  相似文献   

9.
The purpose of the present study was to investigate the antibacterial activity of seven ethanolic extracts and three aqueous extracts from various parts (leaves, stems and flowers) of A. aroma against 163 strains of antibiotic multi-resistant bacteria. The disc diffusion assay was performed to evaluate antibacterial activity of the A. aroma crude extracts, against several Gram-positive bacteria (E. faecalis, S. aureus, coagulase-negative stahylococci, S. pyogenes, S. agalactiae, S. aureus ATCC 29213, E. faecalis ATCC 29212) and Gram-negative bacteria (E. coli., K. pneumoniae, P. mirabilis, E. cloacae, S. marcescens, M morganii, A. baumannii, P. aeruginosa, S. maltophilia, E. coli ATCC 35218, P. aeruginosa ATCC 27853, E. coli ATCC 25922). All ethanolic extracts showed activity against gram-positive bacteria. Among all obtained extracts, only leaf and flower fluid extracts showed activity against Gram-negative bacteria. Based on this bioassay, leaf fluid extracts tended to be the most potent, followed by flower fluid extracts. Minimal inhibitory concentration (MIC) values of extracts and antibiotics were comparatively determined by agar and broth dilution methods. Both extracts were active against S. aureus, coagulase-negative stahylococci, E. faecalis and E. faecium and all tested Gram-negative bacteria with MIC values from 0.067 to 0.308 mg/ml. In this study the minimal bactericidal concentration (MBC) values were identical or twice as high than the corresponding MIC for leaf extracts and four or eight times higher than MIC values for flower extracts. This may indicate a bactericidal effect. Stored extracts have similar antibacterial activity as recently obtained extracts. The A. aroma extracts of leaves and flowers may be useful as antibacterial agents against Gram- negative and Gram-positive antibiotic multi-resistant microorganisms.  相似文献   

10.
A bacterial strain identified as Burkholderia cepacia NB-1 was isolated from water ponds in the botanical garden in Tübingen, Germany, and was found to produce a broad spectrum phenylpyrrole antimicrobial substance active against filamentous fungi, yeasts and Gram-positive bacteria. In batch culture containing glycerol and L- glutamic acid, the isolate NB-1 produced the antibiotic optimally late in the growth phase and accumulated a main portion in their cells. Isolation and purification of the antibiotic from Burkholderia (Pseudomonas) cepacia NB-1 by acetone extraction, gel filtration on Sephadex LH-20 and preparative HPLC yielded 0·54 mg l−1 of a pure substance. Spectroscopic data (HPLC, MS and NMR) confirmed that the compound was pyrrolnitrin [3-chloro-4-(2'-nitro-3'-chloro-phenyl) pyrrole]. Pyrrolnitrin has an inhibitory effect on the electron transport system, as demonstrated by isolated mitochondria from Neurospora crassa 74 A. This inhibition was relieved by N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD), indicating that pyrrolnitrin blocked the electron transfer between the dehydrogenases and the cytochrome components of the respiratory chain. Among Gram-positive bacteria, pyrrolnitrin was most active against certain Streptomyces species, especially S. antibioticus , which has not previously been described in the literature. In the presence of pyrrolnitrin, aerial mycelium and spore formation of Strep. antibioticus was suppressed, although growth continued via substrate mycelium. The new findings of inhibition of streptomycetes and their secondary metabolism by pyrrolnitrin may contribute to the fact that Pseudomonas species predominate in soil and compete even with antibiotic-producing Streptomyces.  相似文献   

11.
A recombinant Anopheles gambiae defensin peptide was used to define the antimicrobial activity spectrum against bacteria, filamentous fungi and yeast. Results showed that most of the Gram-positive bacterial species tested were sensitive to the recombinant peptide in a range of concentrations from 0.1 to 0.75 microM. No activity was detected against Gram-negative bacteria, with the exception of some E. coli strains. Growth inhibitory activity was detected against some species of filamentous fungi. Defensin was not active against yeast. The kinetics of bactericidal and fungicidal effects were determined for Micrococcus luteus and Neurospora crassa, respectively. Differential mass spectrometry analysis was used to demonstrate induction of defensin in the hemolymph of bacteria-infected adult female mosquitoes. Native peptide levels were quantitated in both hemolymph and midgut tissues. The polytene chromosome position of the defensin locus was mapped by in situ hybridization.  相似文献   

12.
The antimicrobial activity of copaiba oils was tested against Gram-positive and Gram-negative bacteria, yeast, and dermatophytes. Oils obtained from Copaifera martii, Copaifera officinalis, and Copaifera reticulata (collected in the state of Acre) were active against Gram-positive species (Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Bacillus subtilis, and Enterococcus faecalis) with minimum inhibitory concentrations ranging from 31.3-62.5 microg/ml. The oils showed bactericidal activity, decreasing the viability of these Gram-positive bacteria within 3 h. Moderate activity was observed against dermatophyte fungi (Trichophyton rubrum and Microsporum canis). The oils showed no activity against Gram-negative bacteria and yeast. Scannning electron microscopy of S. aureus treated with resin oil from C. martii revealed lysis of the bacteria, causing cellular agglomerates. Transmission electron microscopy revealed disruption and damage to the cell wall, resulting in the release of cytoplasmic compounds, alterations in morphology, and a decrease in cell volume, indicating that copaiba oil may affect the cell wall.  相似文献   

13.
Four compounds named L-BTrpPA, L-Trp-o-PA, L-Trp-m-PA and L-Trp-p-PA, pseudopeptides constructed from pyridine and tryptophan units, were synthesized and tested against the Gram-positive, Gram-negative strains of bacteria and human pathogenic fungi. L-Trp-o-PA proved to be a broad-spectrum antimicrobial agent, showing a significant inhibition of the growth of Gram-positive bacteria (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, Micrococcus luteus), and pathogenic fungi (Candida spp., Cryptococcus neoformans, Rhodotorula glutinis, Saccharomyces cerevisiae, Aspergillus spp., Rhizopus nigricans) tested and activity against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris, Enterobacter aerogenes) tested. The in vitro cell cytotoxicity of L-Trp-o-PA was evaluated using haemolytic assay, in which the compound was found to have low lytic property, even up to the concentration of 4000 microg/mL, it only lysed 6-7% of erythrocytes, which was 100-fold greater than the MICs (minimum inhibitory concentration).  相似文献   

14.
Polygonum aviculare (Polygonaceae) is an herb commonly distributed in Mediterranean coastal regions in Egypt and used in folkloric medicine. Organic and aqueous solvent extracts and fractions of P. aviculare were investigated for antimicrobial activities on several microorganisms including bacteria and fungi. Phytochemical constituents of air-dried powered plant parts were extracted using aqueous and organic solvents (acetone, ethanol, chloroform and water). Antimicrobial activity of the concentrated extracts was evaluated by determination of the diameter of inhibition zone against both Gram-negative and Gram-positive bacteria and fungi using paper disc diffusion method.Results of the phytochemical studies revealed the presence of tannins, saponins, flavonoids, alkaloids and sesquiterpenes and the extracts were active against both Gram-negative and Gram-positive bacteria. Chloroform extract gave very good and excellent antimicrobial activity against all tested bacteria and good activity against all tested fungi except Candida albicans. Structural spectroscopic analysis that was carried out on the active substances in the chloroform extract led to the identification of panicudine (6-hydroxy-11-deoxy-13 dehydrohetisane).Evaluation of the antimicrobial activity of panicudine indicated significant activity against all tested Gram-negative and Gram-positive organisms. Panicudine displayed considerable activity against the tested fungi with the exception of C. albicans. Antimicrobial activity of the extracts was unaffected after exposure to different heat treatments, but was reduced at alkaline pH. Studies of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of panicudine on the tested organisms showed that the lowest MIC and the MBC were demonstrated against Salmonella paratyphi, Bacillus subtilis and Salmonella typhi and the highest MIC and MBC were against Staphylococcus aureus.  相似文献   

15.
The aim of this study was to isolate bacteria with antimicrobial activities from the marine sponges Aplysina aerophoba and Aplysina cavernicola. The obtained 27 isolates could be subdivided into eight phylogenetically different clusters based on comparative sequence analysis of their 16S rDNA genes. The sponge isolates were affiliated with the low (Bacillus) and high G+C Gram-positive bacteria (Arthobacter, Micrococcus), as well as the alpha-Proteobacteria (unknown isolate) and gamma-Proteobacteria (Vibrio, Pseudoalteromonas). One novel Bacillus species was identified and two species were closely related to previously uncharacterized strains. Isolates with antimicrobial activity were numerically most abundant in the genera Pseudoalteromonas and the alpha-Proteobacteria. The sponge isolates show antimicrobial activities against Gram-positive and Gram-negative reference strains but not against the fungus Candida albicans. A general pattern was observed in that Gram-positive bacteria inhibited Gram-positive strains while Gram-negative bacteria inhibited Gram-negative isolates. Antimicrobial activities were also found against clinical isolates, i.e. multi-resistant Staphylococcus aureus and Staphylococcus epidermidis strains isolated from hospital patients. The high recovery of strains with antimicrobial activity suggests that marine sponges represent an ecological niche which harbors a hitherto largely uncharacterized microbial diversity and, concomitantly, a yet untapped metabolic potential.  相似文献   

16.
The aerial parts of Salvia multicaulis, S. sclarea and S. verticillata were collected at full flowering stage. The essential oils were isolated by hydrodistillation and analyzed by combination of capillary GC and GC-MS. The in vitro antimicrobial activity of the essential oils were studied against eight Gram-positive and Gram-negative bacteria (Bacillus subtilis, Bacillus pumulis, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The results of antibacterial activity tests of the essential oils according to the disc diffusion method and MIC values indicated that all the samples have moderate to high inhibitory activity against the tested bacteria except for P. aeruginosa which was totally resistant. In contrast to antibacterial activity, the oils exhibited no or slight antifungal property, in which only the oil of S. multicaulis showed weak activity against two tested yeasts, C. albicans and S. cerevisiae.  相似文献   

17.
Copper complexes of thiosemicarbazones of imidazole-2-carbaldehyde, pyrrole-2-carbaldehyde and indole-3-carbaldehyde were synthesised and characterised. The antimicrobial properties of the free ligands and their complexes were evaluated against yeasts, moulds and bacteria (Gram-positive and Gram-negative). Some copper chelates exhibited a moderate inhibitory activity, better than that of the corresponding free ligands. In particular, the pyrrole derivative [Cu(HL(2))(2)] proved to be a wide spectrum agent, showing an interesting inhibition of the growth of all Gram-positive bacteria and fungi tested at concentrations of 12-50 microg/mL. In contrast, a selective effect was observed for imidazole and indole chelates against fungi and Gram-positive bacteria, respectively.  相似文献   

18.
A functionally active 17.5 kDa peptidyl-prolyl cis-trans isomerase was purified to homogeneity from Streptomyces chrysomallus, a Gram-positive filamentous bacterium. Characterization of the enzyme revealed inhibition and binding characteristics, against the immunsuppressive drug cyclosporin A, which were similar to cyclophilins from eukaryotes such as mammals, plants, fungi and yeasts, but different from those of cyclophilins from enterobacteria such as Escherichia coli. The amino acid sequence of the S. chrysomallus cyclophilin, as deduced from the gene sequence, revealed a striking degree of amino acid sequence identity with the corresponding 17 kDa proteins of humans (66%), Neurospora (70%) and yeast (69%). Comparison with cyclophilin sequences from the Gram-negative enterobacteria revealed much less homology (25% identity with E. coli b, 23% identity with E. coli a). Cyclophilin was detected in each of the four other Streptomyces species tested. The cyclophilins from the various streptomycetes differed in size, varying between 17 and 20.5 kDa. The cyclophilins were abundant in the Streptomyces cells, and present throughout growth.  相似文献   

19.
During a screening program, an actinomycete strain isolated from the Egyptian soil was investigated for its potential to show antimicrobial activity. The identification of this isolate was performed according to spore morphology and cell wall chemo-type, which suggested that this strain is a streptomycete. Further cultural, physiological characteristics and the analysis of the nucleotide sequence of the 16S rRNA gene (1480 bp) of this isolate indicated that this strain is identical to Streptomyces violaceusniger (accession number EF063682) and then designated S. violaceusniger strain HAL64. In its culture supernatant, this organism could produce one major compound strongly inhibits the growth of Gram-positive but the inhibition of Gram-negative indicator bacteria was lower. The antibiotic was separated by silica gel column chromatography and then purified on a sephadex LH-20 column and finally the purity was checked by HPLC. The chemical structure of the purified compound was determined using spectroscopic analyses (molecular formula of C33H32N2O10 and molecular weight of 617.21) and found to be identical to the kosinostatin, a quinocycline antibiotic which is known to be produced by Micromonspora sp. TP-A0468 (Igarashi et al., 2002) and to quinocycline B isolated from Streptomyces aureofaciens (Celmer et al., 1958). Although the antibiotic is known, the newly isolated strain was able to produce the antibiotic as a major product providing an important biotechnological downstream advantage.  相似文献   

20.
Geum iranicum Khatamsaz, belonging to the Rosaceae family, is an endemic plant of Iran. The methanol extract of the roots of this plant showed significant activity against one of the clinical isolates of Helicobacter pylori which was resistant to metronidazole. The aim of this study was the isolation and evaluation of the major compounds of G. iranicum effective against H. pylori. The compounds were isolated using various chromatographic methods and identified by spectroscopic data (1H and 13C NMR, HMQC, HMBC, EI-MS). An antimicrobial susceptibility test was performed employing the disk diffusion method against clinical isolates of H. pylori and a micro dilution method against several Gram-positive and Gram-negative bacteria; additionally the inhibition zone diameters (IZD) and minimum inhibitory concentrations (MIC) values were recorded. Nine compounds were isolated: two triterpenoids, uvaol and niga-ichigoside F1, three sterols, beta-sitosterol, beta-sitosteryl acetate, and beta-sitosteryl linoleate, one phenyl propanoid, eugenol, one phenolic glycoside, gein, one flavanol, (+)-catechin, and sucrose. The aqueous fraction, obtained by partitioning the MeOH extract with water and chloroform, was the most effective fraction of the extract against all clinical isolates of H. pylori. Further investigation of the isolated compounds showed that eugenol was effective against H. pylori but gein, diglycosidic eugenol, did not exhibit any activity against H. pylori. The subfraction D4 was the effective fraction which contained tannins. It appeared that tannins were probably the active compounds responsible for the anti-H. pylori activity of G. iranicum. The aqueous fraction showed a moderate inhibitory activity against both Gram-positive and Gram-negative bacteria. The MIC values indicated that Gram-positive bacteria including Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis are more susceptible than Gram-neagative bacteria including Escherichia coli and Pseudomonas aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号