首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

2.
Plant–herbivore interactions are influenced by chemical plant traits, which can vary depending on the plants’ abiotic and biotic environment. Drought events, which are predicted to become more frequent and prolonged due to climate change, may affect primary and secondary plant metabolites contributing to constitutive resistance. Furthermore, the ability of plants to respond to herbivore attack in terms of induced resistance may be altered under drought conditions. We assessed the effects of drought stress on constitutive and induced apple plant resistance to a generalist insect herbivore by quantifying plant and herbivore responses in concert. Plants were exposed to different drought stress intensities (constitutive resistance) and subsequently to herbivore damage treatments that included different damage durations (induced resistance). As drought stress intensified, plant growth and concentrations of the leaf phenolic phloridzin decreased, whereas leaf glucose concentrations increased. Changes in fructose concentrations and in herbivore feeding preferences indicated a non-monotonic shift in constitutive resistance. Moderately stressed plants showed reduced fructose concentrations and were consumed least, while severely stressed plants were fructose-enriched and consumed most compared to well-watered control plants showing intermediate fructose concentrations and palatability. We found no evidence for effects of drought stress on induced resistance, as herbivore feeding preferences for undamaged over damaged plants were independent of drought intensity. Our results suggest a strong role of primary metabolites for drought-dependent variation in constitutive plant resistance and offer novel experimental insights into the effects of drought stress on induced plant resistance across a gradient of water deprivation.  相似文献   

3.
1. Short‐term changes in plant resistance traits can be affected by abiotic factors or damage by herbivores, although how the combined effects of abiotic factors and previous damage affect subsequent insect larval development is not well understood. 2. Complementary glasshouse and field experiments were conducted to evaluate whether plant water stress and previous herbivore damage influenced monarch (Danaus plexippus) larval development on common milkweed, Asclepias syriaca. 3. In the glasshouse, water stress altered a suite of A. syriaca functional traits but did not affect nutrient content, whereas herbivore damage increased leaf nitrogen (N) and reduced the carbon:nitrogen (C:N) ratio. A bioassay experiment showed that monarch larval survival was lower on well‐watered plants that were previously damaged by monarch larva than on damaged and drought‐stressed plants. Bioassay larvae consumed less leaf tissue of previously damaged plants, whereas monarch larval mass was affected additively by water stress and previous damage, after correcting for the amount of leaf tissue consumed. 4. In a 2‐year field experiment, monarch larval performance was higher on previously damaged A. syriaca plants that received experimentally reduced rainfall, relative to plants receiving ambient rainfall. 5. Collectively, these results from glasshouse and field experiments suggest that insect performance was highest on previously damaged plants under water stress and highlight the additive and interactive roles of abiotic and biotic factors on herbivore performance.  相似文献   

4.
Gutbrodt B  Mody K  Wittwer R  Dorn S 《Planta》2011,233(6):1199-1207
Induction of plant resistance by herbivory is a complex process, which follows a temporal dynamic and varies spatially at the within-plant scale. This study aimed at improving the understanding of the induction process in terms of time scale and within-plant allocation, using apple tree seedlings (Malus × domestica) as plant model. Feeding preferences of a leaf-chewing insect (Spodoptera littoralis) for previously damaged and undamaged plants were assessed for six different time intervals with respect to the herbivore damage treatment and for three leaf positions. In addition, main secondary defense compounds were quantified and linked to herbivore feeding preferences. Significant herbivore preference for undamaged plants (induced resistance) was first observed 3 days after herbivore damage in the most apical leaf. Responses were delayed in the other leaf positions, and induced resistance decreased within 10 days after herbivore damage simultaneously in all tested leaf positions. Chemical analysis revealed higher concentrations of the flavonoid phloridzin in damaged plants as compared to undamaged plants. This indicates that herbivore preference for undamaged apple plants may be linked to phloridzin, which is the main secondary metabolite of apple leaves. The observed time course and distribution of resistance responses within plants contribute to the understanding of induction processes and patterns, and support the optimal defense theory stating young tissue to be prioritized. Moreover, induced resistance responses occurred also basipetally in leaves below the damage site, which suggests that signaling pathways involved in resistance responses are not unidirectional.  相似文献   

5.
The jasmonate pathway is a highly conserved defensive cascade in plants that regulates the induction of resistance against herbivores; however, its role in herbivore feeding behaviour remains unknown. We used a mutant tomato plant (def‐1) deficient in the production of jasmonate‐related defensive proteins to test the hypothesis that genotypes with a reduced ability to induce resistance have a higher and more concentrated pattern of herbivore damage. Wild‐type and def‐1 plants received either damage by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) caterpillars or no damage. After treatment, we tested for systemic responses by allowing a free roaming S. exigua caterpillar to feed on the undamaged portions of plants. Weight‐gain and leaf consumption of S. exigua were highest on def‐1 plants, regardless of prior herbivore damage. Def‐1 plants also had fewer numbers of leaves and leaflets eaten, and fewer feeding holes, which was indicative of a more concentrated distribution of damage on mutant compared to wild‐type plants. Following these results, we mimicked the amount and distribution of feeding damage that wild‐type or jasmonate‐deficient plants would receive on wild‐type plants to test whether changes in feeding behaviour may feedback to influence the expression of induced resistance. We mimicked the distribution of damage in wild‐type and jasmonate‐deficient plants by allowing caterpillars to feed on either one (leaf 1 or 2) or two leaves (leaf 1 and 2). Increased herbivore damage resulted in higher proteinase inhibitor (PI) activity, a jasmonate‐regulated defensive protein, and lower S. exigua performance on wild‐type but not jasmonate‐deficient plants. Compared to undamaged plants, a concentrated pattern of herbivore damage increased systemic resistance; these induced responses were greater on leaflets with stronger vascular connections to the damaged leaf. A more dispersed pattern of caterpillar damage altered the expression of induced responses, but the outcome depended on the specific pattern of damage. When leaf 1 was damaged and then leaf 2, the undamaged (third) leaf (which is more strongly connected to leaf 1 than 2) expressed reduced the PI activity compared to plants receiving concentrated damage to leaf 1; whereas in plants where leaf 2 was first damaged and then leaf 1, there were no differences in PI activity in leaf 3 compared to plants receiving concentrated damage to leaf 2. Thus, induction of the jasmonate pathway may not only determine the amount and distribution of feeding damage by herbivores, but this may feedback to affect the subsequent expression of plant defence.  相似文献   

6.
Defoliation‐induced changes in plant foliage are ubiquitous, though factors mediating induction and the extent of their influence on ecosystem processes such as leaf litter decomposition are poorly understood. Soil nitrogen (N) availability, which can be affected by insect herbivore frass (feces), influences phytochemical induction. We conducted experiments to test the hypotheses that insect frass deposition would (1) reduce phytochemical induction following herbivory and (2) increase the decomposition and nutrient release of the subsequent leaf litter. During the 2002 growing season, 80 Quercus rubra saplings were subjected to a factorial experiment with herbivore and frass manipulations. Leaf samples were collected throughout the growing season to measure the effects of frass deposition on phytochemical induction. In live foliage, herbivore damage increased tannin concentrations early, reduced foliar N concentrations throughout the growing season, and lowered lignin concentrations in the late season. Frass deposition apparently reduced leaf lignin concentrations, but otherwise did not influence leaf chemistry. Following natural senescence, litter samples from the treatment groups were decomposed in replicated litterbags for 18 months at the Coweeta Hydrologic Laboratory, NC. In the dead litter samples, initial tannin concentrations were lower in the herbivore damage group and higher in the frass addition group relative to their respective controls. Tannin and N release rates in the first nine months of decomposition were also affected by both damage and frass. However, decomposition rates did not differ among treatment groups. Thus, nutrient dynamics important for some ecosystem processes may be independent from the physical loss of litter mass. Overall, while lingering effects of damage and even frass deposition can therefore carry over and affect ecosystem processes during decomposition, their effects appear short lived relative to abiotic forces that tend to homogenize the decomposition process.  相似文献   

7.
We investigated the responses of 3 thrips species, Frankliniella schultzei Trybom, F. occidentalis Pergrande, and Thrips tabaci Lindeman (Thysanoptera: Thripidae) to herbivore‐damaged and undamaged cotton seedlings (Gossypium hirsutum L. [Malvales: Malvaceae]) at a range of time intervals following damage by adult Tetranychus urticae (Koch), adult T. ludeni (Zacher) (Acari: Tetranychidae) or Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae in olfactometer assays. The intensity/frequency of the response of thrips to herbivore‐induced plants decreased with time and ultimately disappeared in all cases; however, the rate at which the response declined was related to the herbivore species that inflicted the damage. All 3 species of thrips were attracted to plants damaged by T. urticae for longer than they were to plants damaged by T. ludeni. The duration for which damaged plants remained attractive was also affected by the degree of damage inflicted on cotton seedlings. For example, F. schultzei was attracted to plants damaged by a higher density of two‐spotted spider mites (100/plant) for much longer than to plants damaged by a lower density of these mites (50/plant). The results reinforce previous studies that demonstrate that arrangement of variables influences the responses of thrips to their herbivore‐induced cotton host plants. Results also show that these responses are variable in time following herbivore damage to cotton plants, which further demonstrates how difficult it is to generalize about the functional significance of these interactions.  相似文献   

8.
Interactions between the moth Spodoptera littoralis and two of its host plants, alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) were examined, using plants grown under ambient (350 ppm) and elevated (700 ppm) CO2 conditions. To determine strength and effects of herbivore‐induced responses assays were performed with both undamaged (control) and herbivore damaged plants. CO2 and damage effects on larval host plant preferences were determined through dual‐choice bioassays. In addition, larvae were reared from hatching to pupation on experimental foliage to examine effects on larval growth and development. When undamaged plants were used S. littoralis larvae in consumed more cotton than alfalfa, and CO2 enrichment caused a reduction in the preference for cotton. With damaged plants larvae consumed equal amounts of the two plant species (ambient CO2 conditions), but CO2 enrichment strongly shifted preferences towards cotton, which was then consumed three times more than alfalfa. Complementary assays showed that elevated CO2 levels had no effect on the herbivore‐induced responses of cotton, whereas those of alfalfa were significantly increased. Larval growth was highest for larvae fed undamaged cotton irrespectively of CO2 level, and lowest for larvae on damaged alfalfa from the high CO2 treatment. Development time increased on damaged cotton irrespectively of CO2 treatment, and on damaged alfalfa in the elevated CO2 treatment. These results demonstrate that elevated CO2 levels can cause insect herbivores to alter host plant preferences, and that effects on herbivore‐induced responses may be a key mechanism behind these processes. Furthermore, since the insects were shown to avoid foliage that reduced their physiological performance, our data suggest that behavioural host plant shifts result in partial escape from negative consequences of feeding on high CO2 foliage. Thus, CO2 enrichment can alter both physiology and behaviour of important insect herbivores, which in turn may to impact plant biodiversity.  相似文献   

9.
Nora C. Underwood 《Oecologia》1998,114(3):376-381
Induced plant responses to herbivory have been demonstrated in many systems. It has been suggested that the timing of these responses may influence the impact of induced resistance on herbivore populations, and may affect the evolution of induced defenses. This study used a bioassay to characterize the time course of systemic induced responses to Mexican bean beetle herbivory in four genotypes of soybeans. The results suggest that the time course of induced responses in this system is more complex than most previous studies have indicated. Herbivory provoked both rapid induced resistance and subsequent induced susceptibility to beetle feeding. All four genotypes of soybean induced significant resistance to beetle damage (beetles preferred undamaged to damaged plants) by 3 days after damage. By 15 days after damage, this resistance had decayed (beetles showed no preference for undamaged over damaged plants), and by 20 days after damage, all four genotypes exhibited significant induced susceptibility (beetles preferred previously damaged plants over undamaged plants). The magnitude of induced resistance in each genotype correlated strongly with the magnitude of induced susceptibility in that genotype. Received: 28 September 1997 / Accepted: 1 December 1997  相似文献   

10.
1. A tritrophic perspective is fundamental for understanding the drivers of insect–plant interactions. While host plant traits can directly affect insect herbivore performance by either inhibiting or altering the nutritional benefits of consumption, they can also have an indirect effect on herbivores by influencing rates of predation or parasitism. 2. Enhancing soil nutrients available to trees of the genus Eucalyptus consistently modifies plant traits, typically improving the nutritional quality of the foliage for insect herbivores. We hypothesised that resulting increases in volatile essential oils could have an indirect negative effect on eucalypt‐feeding herbivores by providing their natural enemies with stronger host/prey location cues. 3. Eucalyptus tereticornis Smith seedlings were grown under low‐ and high‐nutrient conditions and the consequences for the release of volatile cues from damaged plants were examined. The influence of 1,8‐cineole (the major volatile terpene in many Eucalyptus species) on rates of predation on model caterpillars in the field was then examined. 4. It was found that the emission of cineole increased significantly after damage (artificial or herbivore), but continued only when damage was sustained by herbivore feeding. Importantly, more cineole was emitted from high‐ than low‐nutrient seedlings given an equivalent amount of damage. In the field, predation was significantly greater on model caterpillars baited with cineole than on unbaited models. 5. These findings are consistent with the hypothesis that any performance benefits insect herbivores derive from feeding on high‐nutrient eucalypt foliage could be at least partially offset by an increased risk of predation or parasitism via increased emission of attractive volatiles.  相似文献   

11.
Abstract. 1. Although both genotype and induced responses affect a plant's resistance to herbivores, little is known about their relative and interactive effects. This study examined how plant genotype of a native plant (Oenothera biennis) and induced plant responses to herbivory affect resistance to, and interactions among, several herbivores. 2. In a field experiment, genetic and environmental variation among habitats led to variation in the amount of early season damage and plant quality. The pattern of variation in early season infestation by spittlebugs (Philaenus spumarius, a piercing–sucking herbivore) negatively correlated with oviposition preference by a later feeding specialist weevil (Tyloderma foveolatum, a leaf‐chewer). 3. To determine if plant genotype and induced responses to herbivory might be responsible for these field patterns, we performed no‐choice and choice bioassays using four genotypes of O. biennis that varied in resistance. Plants were induced by either spittlebugs or weevils and assays measured the responses of the same specialist weevil as well as a generalist caterpillar (Spodoptera exigua). 4. Resistance to adult weevils was largely unaffected by plant genotype, while they experienced induced resistance following damage by conspecific weevils in no‐choice assays. Caterpillars were more strongly affected by plant genotype than induced responses in both no‐choice and choice assays, but they also fed less and experienced higher mortality on plants previously damaged by weevils. In contrast to the pattern suggested by the field experiment, spittlebugs did consistently induce resistance against either weevils or caterpillars in the bioassay experiment. 5. These results support recent findings that show herbivore species can compete via induced plant responses. Additionally, a quantitative review of the literature demonstrates that plant genotype tends to be more important than interspecific competition among herbivores (plant‐mediated or otherwise) in affecting herbivore preference and performance.  相似文献   

12.
Nora Underwood 《Oikos》2010,119(12):1993-1999
Net intraspecific density dependence experienced by insect herbivores at the scale of single plants can be a function both of induced resistance in the plant and other interactions among individual herbivores. Theory suggests that non‐linearity in the form of this density dependence can influence the effects of plants on herbivore population dynamics. This study examined both net density dependence at the scale of single plants, and changes in plant quality with herbivore density for Spodoptera exigua caterpillars on tomato plants. One experiment measured the growth of caterpillars moving freely about the plant at different densities, the distribution of damage by these caterpillars, and the quality of the plant as food for caterpillars (growth of caterpillars on undamaged leaf tissue excised from the plant). A second experiment measured plant quality for plants with different amounts of damage by caterpillars confined to particular leaves in mesh bags. Growth of S. exigua caterpillars was found to be negatively density dependent, and this was in part due to decreases in plant quality both as herbivore density increased and as the amount of damage increased. The response of plant quality to herbivores was found to have non‐linear features; there was both a threshold below which no significant decreases in quality (as measured by herbivore growth) occurred, and the decrease in herbivore performance saturated at the highest damage levels. In addition, it was found that caterpillar damage was significantly more aggregated than expected when multiple caterpillars occupy a single plant. This study confirms that host plants have the potential to be a source of density dependence that affects herbivore performance.  相似文献   

13.
Seasonal changes in herbivore numbers and in plant defenses are well known to influence plant–herbivore interactions. Some plant defenses are induced in response to herbivore attack or cues correlated with risk of attack although seasonal variation in these defenses is relatively poorly known. We previously reported that sagebrush becomes more resistant to its herbivores when neighboring plants have been experimentally clipped with scissors. In this study we asked whether herbivory to leaves of sagebrush varied seasonally and whether there was seasonal variation in natural levels of damage when neighbors were clipped. We found that sagebrush accumulated most chewing damage early in the season, soon after the spring flush of new leaves. This damage was caused by generalist grasshoppers, deer, specialist caterpillars, beetles, gall makers, and other less common herbivores. Sagebrush showed no evidence of preferentially abscising leaves that had been experimentally clipped. Experimental clipping by Trirhabda pilosa beetle larvae caused neighbors to accumulate less herbivore damage later that season, similar to results in which clipping was done with scissors. Induced resistance caused by experimentally clipping a neighbor was affected by season; plants with neighbors clipped in May accumulated less damage throughout the season relative to plants with unclipped neighbors or neighbors clipped later in the summer. We found a correlation between seasonal herbivore pressure, damage accumulated by plants, and induced responses to experimentally clipping neighbors. The causal mechanisms responsible for this correlation are unknown although a strong seasonal effect was clear.  相似文献   

14.
Drought events are predicted to increase due to climate change, yet consequences for plant–insect interactions are only partially understood. Drought‐mediated interactions between herbivores and their host plants are affected by a combination of factors, including characteristics of the affected plant, its associated herbivore and of the prevailing drought. Studying the effect of these factors in combination may provide important insight into plant and herbivore responses to drought. We studied drought effects on plant resistance to two leaf‐chewing herbivores by considering differing growth conditions, plant chemistry and insect responses in concert. We exposed Alliaria petiolata plants from several wild populations to different intensities of intermittent drought stress and quantified drought‐mediated changes in plant chemistry. Simultaneously, we assessed behavior (feeding preference) and performance of two lepidopteran herbivores: Pieris brassicae, a specialist, and Spodoptera littoralis, a generalist. Drought led to lowest concentrations of secondary defense compounds in severely stressed plants, without affecting total nitrogen content. Additionally, drought evoked opposite patterns in feeding preferences (plant palatability) between the herbivore species. Pieris brassicae consumed most of well‐watered plants, while S. littoralis preferred severely drought‐stressed plants. Hence, feeding preferences of S. littoralis reflected changes in plant secondary chemistry. Contrary to their feeding preference, P. brassicae performed better on drought‐stressed than on well‐watered plants, with faster development and higher attained pupal mass (plant suitability). Spodoptera littoralis showed retarded development in all treatments. In conclusion, drought caused plant secondary defense compounds to decrease consistently across all studied plant populations, which evoked contrasting feeding preferences of two herbivore species of the same feeding guild. These results suggest herbivore specificity as a possible explanation for herbivore responses to drought and emphasize the importance of herbivore characteristics such as feeding specialization in understanding and predicting consequences of future drought events.  相似文献   

15.
Herbivore‐induced changes in plants have been widely viewed as defensive responses against further insect attack. However, changes in plants as a consequence of herbivore feeding can elicit various responses in herbivores; these are variable, context dependent, and often unpredictable. In this laboratory study, the responses of Thrips tabaci Lindeman (Thysanoptera: Thripidae) to volatiles emitted by intact and herbivore‐damaged or mechanically damaged cotton seedlings [Gossypium hirsutum L. (Malvaceae)] were investigated in dual‐choice olfactometer assays. Thrips tabaci showed increased attraction to seedlings subject to foliar mechanical damage and those with foliar damage inflicted by conspecifics or Tetranychus urticae Koch (Acari: Tetranychidae), upon which it preys. However, T. tabaci did not discriminate between intact seedlings and those with foliar damage inflicted by Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), two other species of thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae), or those with root damage inflicted by Tenebrio molitor L. (Coleoptera: Tenebrionidae). Attraction of T. tabaci was also affected by herbivore density on damaged plants. That is, seedlings damaged by higher densities of T. urticae or T. tabaci were more attractive than seedlings damaged by lower densities of the corresponding arthropod. Although attracted to plants damaged by conspecifics or T. urticae, T. tabaci showed greater attraction to seedlings damaged by T. urticae than to seedlings damaged by conspecifics. Results are discussed in the context of the responses of F. schultzei and F. occidentalis to herbivore‐induced cotton seedlings, highlighting the complexity, variability, and unpredictability of the responses of even closely related species of insects to plants under herbivore attack.  相似文献   

16.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

17.
Based on the model system of Brussels sprouts [Brassica oleracea var. gemmifera (Brassicaceae)], the herbivore cabbage white caterpillar, Pieris brassicae (L.) (Lepidoptera: Pieridae), and the parasitoid wasp, Cotesia glomerata (L.) (Hymenoptera: Braconidae), the influence of plant damage type, and damage duration were assessed on plant volatile emission and subsequent recruitment of natural antagonists of the herbivore. Plants were damaged by three methods for a period of either 3 or 8 h: herbivore damage (HD), progressive mechanical damage, and final mechanical damage inflicted in a single event. Wind‐tunnel bioassays evaluated whether the mode of damage affected female parasitoid oriented flight. After both periods of damage, all treatments were highly significantly preferred by naïve C. glomerata to undamaged control plants. After 3 h, herbivore‐damaged plants were significantly preferred to plants with final damage (FD). Most remarkably, following 8‐h damage, the parasitoid preferred both herbivore‐damaged and progressively damaged plants to plants with FD and did not significantly discriminate between herbivore and progressively damaged plants, thus indicating a similarity in plant response to herbivore and progressive mechanical damage. In addition to wind‐tunnel bioassays, emitted plant volatiles were collected and analysed by thermal desorption gas chromatography/mass spectrometry, following 3 and 8 h of damage in order to correlate volatiles released from different damage types with the attraction of the parasitoid. Differences in volatile profiles from all damage types were similar following both 3 and 8 h of damage, with only (Z)‐3‐hexenyl acetate found to be emitted in significantly higher quantities by final mechanical damage compared with HD after 3 h. In conclusion, the plant's response to progressive mechanical damage was more similar to HD than final mechanical damage deployed at a single point in time, irrespective of damage duration, and C. glomerata did not significantly discriminate between progressive damage and HD.  相似文献   

18.
19.
Plant‐emitted volatile organic compounds (VOCs) mediate interactions within a plant community. Typically, receiving a signal from a damaged neighbour enhances the defensive attributes of a receiver plant. The mechanisms underlying plant–plant interactions may be divided into active and passive processes, both of which involve transit of VOCs between plants and are vulnerable to environmental perturbation. Numerous studies have documented between‐plant interactions, but the specific effects on a receiver plant's interactions with herbivores have received little attention. Moreover, the relative contributions of active and passive processes to plant defence and the effects of environmental pollutants on the processes have been largely unexplored. We used a system comprising Brassica oleracea var. italica (broccoli) and the specialist herbivore Plutella xylostella to test whether plants previously exposed to herbivore‐damaged neighbours differed from nonexposed plants in their susceptibility to oviposition. We then investigated the roles of active and passive mechanisms in our observations and whether differences in susceptibility remained under elevated ozone concentrations. Plants exposed to herbivore‐damaged neighbours were more susceptible to oviposition than plants exposed to undamaged neighbours, which indicates associational susceptibility. Mechanistically, active and passive volatile‐mediated processes occurred in tandem with the passive process – involving adsorption of sesquiterpenes to receiver plants – appearing to structure the oviposition response. Exposure to ozone rapidly degraded the sesquiterpenes and eliminated the associational susceptibility. Plant volatiles have typically been thought to play roles in between‐plant interactions and to promote receiver plant defence. Here, we show that receiver plants may also become more susceptible to oviposition and thus more likely to be damaged. Extensive disruption of volatile‐mediated interactions by an atmospheric pollutant highlights the need to consider the pervading environment and changes therein when assessing their ecological significance.  相似文献   

20.
Studies of insect herbivory have mostly focused on leaf‐feeding even though most woody plant biomass is stem tissue. Attack to stems has the potential to be more detrimental to plant performance than attack to leaves. Here we asked how severe is the impact of insect stem herbivory on plant performance. We quantify the effect of insect stem herbivory via a meta‐analysis of 119 papers in 100 studies (papers by the same authors were treated as the same study). These studies involved 92 plant species and 70 species of insect herbivore (including simulated herbivory). Attack to plant stems reduced plant performance by an average of approximately 22%. Stem herbivory had greatest impacts on plant and branch survival, which was reduced by 63%. Measures of plant reproduction and vegetative biomass were reduced by 33% and 16% respectively, while measurements of photosynthetic rate were not significantly different between plants with and without stem herbivore attack. Stem herbivory led to a decline in leader performance but an increase in performance of laterals, highlighting the importance of plant compensation. Juvenile plants were more severely affected by stem herbivory than adult plants, and studies conducted in greenhouses found more severe effects than studies conducted in the field. Stem herbivory did not have a significant effects on any of the non‐performance responses measured (defence compounds, SLA, root:shoot, phenology and plant carbon and nitrogen). We compare our results with results from various meta‐analyses considering herbivory on other plant parts. The impact of insect herbivory to stems on plant performance appears at least as severe as insect herbivory to roots and leaves, if not more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号