首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
RNA editing by A-to-I modification has been recognized as an important molecular mechanism for generating RNA and protein diversity. In mammals, it is mediated by a family of adenosine deaminases that act on RNAs (ADARs). The large version of the editing enzyme ADAR1 (ADAR1-L), expressed from an interferon-responsible promoter, has a Z-DNA/Z-RNA binding domain at its N-terminus. We have tested the in vitro ability of the enzyme to act on a 50 bp segment of dsRNA with or without a Z-RNA forming nucleotide sequence. A-to-I editing efficiency is markedly enhanced in presence of the sequence favoring Z-RNA. In addition, an alteration in the pattern of modification along the RNA duplex becomes evident as reaction times decrease. These results suggest that the local conformation of dsRNA molecules might be an important feature for target selectivity by ADAR1 and other proteins with Z-RNA binding domains.  相似文献   

4.
A-to-I RNA editing is a ubiquitous and crucial molecular mechanism able to convert adenosines into inosines (then read as guanosines by several intracellular proteins/enzymes) within RNA molecules, changing the genomic information. The A-to-I deaminase enzymes (ADARs), which modify the adenosine, can alter the splicing and translation machineries, the double-stranded RNA structures and the binding affinity between RNA and RNA-binding proteins. ADAR activity is an essential mechanism in mammals and altered editing has been associated with several human diseases. Many efforts are now being concentrated on modifying ADAR activity in vivo in an attempt to correct RNA editing dysfunction. Concomitantly, ongoing studies aim to show the way that the ADAR deaminase domain can be used as a possible new tool, an intracellular Trojan horse, for the correction of heritage diseases not related to RNA editing events.  相似文献   

5.
6.
A-to-I editing challenger or ally to the microRNA process   总被引:4,自引:0,他引:4  
Ohman M 《Biochimie》2007,89(10):1171-1176
  相似文献   

7.
8.
ADAR2 is a double-stranded RNA-specific adenosine deaminase involved in the editing of mammalian RNAs by the site-specific conversion of adenosine to inosine (A-to-I). ADAR2 contains two tandem double-stranded RNA-binding motifs (dsRBMs) that are not only important for efficient editing of RNA substrates but also necessary for localizing ADAR2 to nucleoli. The sequence and structural similarity of these motifs have raised questions regarding the role(s) that each dsRBM plays in ADAR2 function. Here, we demonstrate that the dsRBMs of ADAR2 differ in both their ability to modulate subnuclear localization as well as to promote site-selective A-to-I conversion. Surprisingly, dsRBM1 contributes to editing activity in a substrate-dependent manner, indicating that dsRBMs recognize distinct structural determinants in each RNA substrate. Although dsRBM2 is essential for the editing of all substrates examined, a point mutation in this motif affects editing for only a subset of RNAs, suggesting that dsRBM2 uses unique sets of amino acid(s) for functional interactions with different RNA targets. The dsRBMs of ADAR2 are interchangeable for subnuclear targeting, yet such motif alterations do not support site-selective editing, indicating that the unique binding preferences of each dsRBM differentially contribute to their pleiotropic function.  相似文献   

9.
10.
11.
12.
ADAR1 is an RNA-specific adenosine deaminase that edits RNA sequences. We have demonstrated previously that different ADAR1 isoforms are induced during acute inflammation. Here we show that the mouse ADAR1 isoforms are differentially localized in cellular compartments and that their localization is controlled by several independent signals. Nuclear import of the full-length ADAR1 is predominantly regulated by a nuclear localization signal at the C terminus (NLS-c), which consists of a bipartite basic amino acid motif plus the last 39 residues of ADAR1. Deletion of the NLS-c causes the truncated ADAR1 protein to be retained in the cytoplasm. The addition of this sequence to pyruvate kinase causes the cytoplasmic protein to be localized within the nucleus. The localization of nuclear ADAR1 is determined by a dynamic balance between the nucleolar binding activity of the nucleolar localization signal (NoLS) in the middle of the protein and the exporting activity of the nuclear exporter signal (NES) near the N terminus. The NoLS consists of a typical monopartite cluster of basic residues followed by the third double-stranded RNA-binding domain. These signals act independently; however, NES function can be completely silenced by the NLS-c when a regulatory motif within the catalytic domain and the NoLS are deleted. Thus, the intracellular distribution of the various ADAR1 isoforms is determined by NLS-c, NES, NoLS, and a regulatory motif.  相似文献   

13.
14.
The first crystal structure of a protein, the Z alpha high affinity binding domain of the RNA editing enzyme ADAR1, bound to left-handed Z-DNA was recently described. The essential set of residues determined from this structure to be critical for Z-DNA recognition was used to search the database for other proteins with the potential for Z-DNA binding. We found that the tumor-associated protein DLM-1 contains a domain with remarkable sequence similarities to Z alpha(ADAR). Here we report the crystal structure of this DLM-1 domain bound to left-handed Z-DNA at 1.85 A resolution. Comparison of Z-DNA binding by DLM-1 and ADAR1 reveals a common structure-specific recognition core within the binding domain. However, the domains differ in certain residues peripheral to the protein-DNA interface. These structures reveal a general mechanism of Z-DNA recognition, suggesting the existence of a family of winged-helix proteins sharing a common Z-DNA binding motif.  相似文献   

15.
16.
17.
18.
19.
Z-DNA, the left-handed conformer of DNA, is stabilized by the negative supercoiling generated during the movement of an RNA polymerase through a gene. Recently, we have shown that the editing enzyme ADAR1 (double-stranded RNA adenosine deaminase, type 1) has two Z-DNA binding motifs, Zalpha and Zbeta, the function of which is currently unknown. Here we show that a peptide containing the Zalpha motif binds with high affinity to Z-DNA as a dimer, that the binding site is no larger than 6 bp and that the Zalpha domain can flip a range of sequences, including d(TA)3, into the Z-DNAconformation. Evidence is also presented to show that Zalpha and Zbeta interact to form a functional DNA binding site. Studies with atomic force microscopy reveal that binding of Zalpha to supercoiled plasmids is associated with relaxation of the plasmid. Pronounced kinking of DNA is observed, and appears to be induced by binding of Zalpha. The results reported here support a model where the Z-DNA binding motifs target ADAR1 to regions of negative supercoiling in actively transcribing genes. In this situation, binding by Zalpha would be dependent upon the local level of negative superhelicity rather than the presence of any particular sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号