首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Mammalian TCR delta genes are located in the midst of the TCR alpha gene locus. In the chicken, one large V delta gene family, two D delta gene segments, two J delta gene segments, and one C delta gene have been identified. The TCR delta genes were deleted on both alleles in alpha beta T cell lines, thereby indicating conservation of the combined TCR alpha delta locus in birds. V alpha and V delta gene segments were found to rearrange with one, both or neither of the D delta segments and either of the two J delta segments. Exonuclease activity, P-addition, and N-addition during VDJ delta rearrangement contributed to TCR delta repertoire diversification in the first embryonic wave of T cells. An unbiased V delta 1 repertoire was observed at all ages, but an acquired J delta 1 usage bias occurred in the TCR delta repertoire. The unrestricted combinatorial diversity of relatively complex TCR gamma and delta loci may contribute to the remarkable abundance of gamma delta T cells in this avian representative.  相似文献   

3.
4.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

5.
6.
7.
8.
Clones were obtained from human peripheral blood WT31-, WT31-CD4-8-, CD4-8- or Leu 7+ cells in the presence of interleukin 2 and phytohaemagglutinin. Almost all clones were CD3+, about 50% were CD4-8- and all clones tested derived from WT31- remained WT31-, indicating that they were expressing a gamma/delta heterodimer in association with CD3. Some clones derived from CD4-8- cells expressing CD3 were WT31- and some were WT31+. All CD3+ clones had T cell receptor (TCR) gamma gene rearrangements; most also had their TCR beta genes rearranged, including all clones derived from Leu 7+ cells. TCR gamma gene rearrangements were noted involving all five known J segments. There was a tendency for V gene segments from the VII and VIII subgroups to be rearranged to J gamma 2 less often than those from the more 5' VI subgroup. Two clones definitely had one rearrangement to C gamma 1 and one to C gamma 2. When clones derived from WT31- cells were considered, the only obvious relationship which emerged was that all clones with both chromosomes rearranged to C gamma 2 had low or negligible cytotoxic activity against natural killer (NK)-sensitive and NK-resistant targets. Several of these clones were expressing CD8 on about 30% of cells. Most clones with rearrangements involving only C gamma 1 had high non-MHC-restricted cytotoxicity while those with at least one C gamma 1 rearrangement had either high or low activity. The only exceptions noted were a clone with a single V9JP rearrangement and a clone with a V9JP and a VI/IIIJP1 rearrangement, which both had low activity. A similar pattern was also found with most clones derived from Leu 7+ cells. The data are consistent with the participation of most types of disulphide-linked (C gamma 1) gamma/delta heterodimers in non-MHC-restricted cytotoxic activity mediated by CD3+ gamma/delta + T cell clones.  相似文献   

9.
To study rearrangement of T cell receptor (TCR) genes, transgenic mice were generated with a TCR beta minilocus in germline configuration, containing three V beta, two D beta, fourteen J beta and two C beta gene segments and the TCR beta enhancer. Using the polymerase chain reaction as an analytical tool both partial DJ as well as complete VDJ rearrangements were seen, indicating that the minilocus contained all sequence elements required for rearrangment. Rearrangements of minilocus gene segments were restricted to T cells in the thymus and the periphery and did not occur in B cells. V beta 8.3 and V beta 5 sequences encoded by the minilocus were expressed on the surface of peripheral T cells at high frequencies. Transgenic mice with TCR minilocus genes will be a useful system to identify DNA sequence elements required for regulation of rearrangement in vivo.  相似文献   

10.
Organization of the human T-cell receptor genes   总被引:1,自引:0,他引:1  
T lymphocytes recognize antigens through their membrane bound T-cell receptors. Whereas the conventional T-cell receptors are heterodimers of alpha and beta chains, expressed at the surface of CD3+ CD4+ and CD3+ CD8+ T lymphocytes, the gamma delta T-cell receptors are found at the surface of a subset of T-lymphocytes of phenotype CD3+ CD4- CD8-. The synthesis of the T-cell receptor chains results from the junction (or rearrangement) of DNA segments: Variable (V) gene and joining (J) segment for the alpha and gamma chains, V gene, D (diversity) and J segments for the beta and delta chains. In this review, we summarize the recent findings on the genomic organization of the alpha, beta, gamma and delta T-cell receptor loci in human.  相似文献   

11.
The kappa immunoglobulin (Ig) genes from rat kidney and from rat myeloma cells were cloned and analyzed. In kidney DNA one C kappa species is observed by Southern blotting and cloning in phage vectors; this gene most likely represents the embryonic configuration. In the IR52 myeloma DNA two C kappa species are observed: one in the same configuration seen in kidney and one which has undergone a rearrangement. This somatic rearrangement has brought the expressed V region to within 2.7 kb 5' of the C kappa coding region; the rearrangement site is within the J kappa cluster which we have mapped. The rat somatic Ig rearrangement, therefore, closely resembles that seen in mouse Ig genes. In the rat embryonic fragment two J kappa segments were mapped at 2 and 4.3 kb 5' from the C kappa coding region. Therefore, the rat J kappa cluster extends over about 2.3 kb, a region much longer than the 1.4 kb of the mouse and human J kappa clusters. In the region between C kappa and the expressed J kappa of IR52 myeloma DNA, and XbaI site present in the embryonic kappa gene has been lost. A somatic mutation has therefore occurred in the intervening sequence DNA approx. 0.7 kb 3' from the V/J recombination site. Southern blots of rat kidney DNA hybridized with different rat V kappa probes showed non-overlapping sets of bands which correspond to different subgroups, each composed of 8-10 closely related V kappa genes.  相似文献   

12.
13.
14.
A 5.3 kb EcoRI fragment (T3, abbreviations in ref. 2) has been cloned from DNA of a kappa light chain producing mouse myeloma. The fragment hybridizes to the k' flanking sequences of the J1 gene segment but not to C gene sequences of kappa light chain DNA. Restriction nuclease mapping and partial nucleotide sequencing showed that the fragment consists of sequences from the 5' side of the J1 and form the 3' side of a V gene segment, which apparently had been linked in a genomic rearrangement process. These rearranged flanking sequences are not the flanking sequences of the V and J gene segments which had been joined to form the two kappa light chain genes of the myeloma. Fragments with the hybridization properties of T3 have been found also in two other kappa and one lambda chain producing myelomas. The linking of flanking sequences in the myeloma genome is discussed with respect to the mechanism of recombination between V and J gene segments.  相似文献   

15.
We describe nine T cell gamma variable (V) gene segments isolated from human DNA. These genes, which fall into two subgroups, are mapped in two DNA regions covering 54 kb and probably represent the majority of human V gamma genes. One subgroup (V gamma I) contains eight genes, consisting of four active genes and four pseudogenes. The single V gamma II gene is potentially active. Sequence analysis of the V gamma I genes shows variation clustered in hypervariable regions, but somatic variability is restricted to N-region diversity. Studies on rearrangement in T cell lines and in thymic DNA show that major rearrangements can be observed that are attributable to the five active V gamma genes. In addition, human cells with the phenotype of helper T cells can undergo productive V gamma-J gamma joining.  相似文献   

16.
A functionally defective lambda 3-immunoglobulin chain gene has been cloned from plasmacytoma HOPC-1 (gamma 2b, lambda 1). The lambda 3 gene resulted from the juxtaposition of the germline V lambda 1 sequence with a J lambda 3 C lambda 3 gene segment. DNA sequencing of the rearranged V lambda 1 J lambda 3 exon showed the presence of a single base pair deletion at the site of V-J joining. The alteration in the reading frame caused by this deletion generated a stop codon at the 3' end of J lambda 3, thus rendering this gene nonfunctional for light chain production. In addition, a one-point mutation in the J lambda 3-C lambda 3 intron distinguishes the rearranged gene from the unrearranged counterpart. The implications that this rearrangement has in terms of the mechanism of somatic mutations and of selective proliferation of B cells mediated by antigen stimulation are discussed.  相似文献   

17.
The role of a T gamma gene product in the immune response is not known. To investigate the participation of the T gamma gene in functional T cells, we estimated its variable (V gamma) gene diversity among mature polyclonal T cells and assayed for in vivo selection of rearranged V gamma genes during the immune response. In this study, we present evidence that functionally mature, normal human T cells have rearranged their T gamma genes but display a limited range of gene rearrangement choices. In contrast to clonal T cell neoplasms, an invariant array of seven T gamma gene rearrangements was found to be proportionately distributed within normal polyclonal T cell populations, as well as in benign polyclonal T cell proliferations incited by a wide variety of pathological conditions. Findings presented here indicate that the likelihood of rearrangement of each human V gamma gene may be fixed. Lack of selection of V gamma genes during the mature T cell immune response implies a limited role of any single V gamma gene at this stage of T cell development.  相似文献   

18.
Lymphocyte development requires the assembly of antigen receptor genes through the specialized process of V(D)J recombination. This process is initiated by cleavage at the junction between coding segments (V, D, and J) and the recombination signal sequences that border these segments, resulting in generation of double-strand break intermediates. We have used a two-dimensional gel system to characterize broken molecules arising from V(D)J recombination at the T-cell receptor (TCR) delta locus and have identified linear species excised by Ddelta1-Ddelta2 and V-Ddelta2 rearrangement in thymus DNA. Relatively few (approximately 10) V-Ddelta2-excised linear species were detected in DNA from fetal thymocytes. The sizes of these species corresponded to the estimated distances between Ddelta2 and the V gene segments utilized by gammadelta T cells and indicated that both Ddelta2-proximal and -distal V gene segments are targeted for V-Ddelta2 rearrangement. Similar-sized species were observed in DNA from thymocytes of scid mice in which T-cell development is arrested prior to TCR expression. Since previous studies suggest that the TCR alpha/delta locus encodes more than 100 V gene segments, our results indicate that a few select V gene segments are predominantly targeted for rearrangement to Ddelta2, and this primarily accounts for the restricted Vdelta gene repertoire of gammadelta T cells.  相似文献   

19.
G K Sim  A Augustin 《Cell》1990,61(3):397-405
In BALB/c lung and lymph node gamma delta T cells, a large fraction of the expressed V delta 5 genes consist of an invariant sequence, BID (for BALB/c invariant delta). BID results from a direct joining of the V delta 5, D delta 2, and J delta 1 segments, which conserve their complete germline coding sequences. In C57BL/6 (H-2b) mice, where identical and functional segments are present in the germline, BID is absent. It appears that BID+ gamma delta T cells are positively selected by factors encoded outside of the classical MHC region, as indicated by their dominance in F1(C57BL/6 x BALB/c) and in BALB.B (H-2b) mice. Additional observations, including the expression of BID in BALB/c nu/nu but not in C57BL/6 nu/nu mice, suggest that the expansion of BID+ T cells essentially occurs extrathymically.  相似文献   

20.
gammadelta T cells commonly account for 0.5%-5% of human (gammadelta low species) circulating T cells, whereas they are very common in chickens, and they may account for >70% of peripheral cells in ruminants (gammadelta high species). We have previously reported the ovine TRG2@ locus structure, the first complete physical map of any ruminant animal TCR locus. Here we determined the TRG1@ locus organization in sheep, reported all variable (V) gamma gene segments in their germline configuration and included human and cattle sequences in a three species comparison. The TRG1@ locus spans about 140 kb and consists of three clusters named TRG5, TRG3, and TRG1 according to the constant (C) genes. The predicted tertiary structure of cattle and sheep V proteins showed a remarkably high degree of conservation between the experimentally determined human Vgamma9 and the proteins belonging to TRG5 Vgamma subgroup. However systematic comparison of primary and tertiary structure highligthed that in Bovidae the overall conformation of the gammadelta TCR, is more similar to the Fab fragment of an antibody than any TCR heterodimer. Phylogenetic analysis showed that the evolution of cattle and sheep V genes is related to the rearrangement process of V segments with the relevant C, and consequentely to the appartenence of the V genes to a given cluster. The TRG cluster evolution in cattle and sheep pointed out the existence of a TRG5 ancient cluster and the occurrence of duplications of its minimal structural scheme of one V, two joining (J), and one C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号