首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
本文将鱼类抗冻蛋白应用于植物细胞的超低温保存。结果表明,在水稻悬浮细胞的两步法保存中,浓度为0.01mg/ml的抗冻蛋白具有特别的负作用,相对高浓度的抗冻蛋白则能减小细胞存活率的波动性。在玻璃化法保存中,浓度为0.2mg/ml的抗冻蛋白能改善保存效果,更高浓度的抗冻蛋白(>5mg/ml)反而会降低保存效果。环境冰晶量、抗冻蛋白浓度、低温保护剂浓度和细胞膜组成等是影响抗冻蛋白使用效果的几大因素。作者在机理分析中认为,一方面,抗冻蛋白能和冰晶作用,抑制重冰晶,防止去玻璃化;另一方面,抗冻蛋白也能和细胞膜作用,诱发膜表面冰晶形成。  相似文献   

2.
Wang JH 《Cryobiology》2000,41(1):1-9
During the past 10 years, it has become clear that the effects of antifreeze proteins (AFPs) on cell viability and on thermodynamic properties during low-temperature preservation are complex, even controversial. In this paper, these studies are reviewed systematically and some conclusions are drawn. It is shown that AFPs can display both protective and cytotoxic actions and both nucleation of ice and inhibition of ice crystal growth, depending on several factors; these include the specific storage protocol, the dose and type of AFP, the composition and concentration of cryoprotectant, and the features of the biological material. A novel model, incorporating some recent findings concerning these proteins, is proposed to explain this dual effect of AFPs during cryopreservation. AFP-ice complexes have some affinity interactions with cell membranes and with many other molecules present in cryopreservation solutions. When the intensity of these interactions reaches a certain level, the AFP-ice complexes may be induced to aggregate, thereby inducing ice nucleation and loss of the ability to inhibit recrystallization.  相似文献   

3.
《Reproductive biology》2020,20(2):169-174
Sperm cryopreservation causes different stresses including thermal shock, osmotic damage, and ice crystal formation, thereby reducing sperm quality. Few studies have evaluated the application of AFPs in cryopreservation. The effects of antifreeze protein III (AFP III) on human sperm cryopreservation is not fully understood therefore, we conducted this study to investigate the effects of AFPIII treatment on human sperm parameters following cryopreservation. First, for 20 semen samples the effects of various concentrations of AFPIII (0, 0.01, 0.1, 1, 5, 10 μg/ml) were evaluated. Sperm parameters, such as motility and viability were assessed in order to identify an optimal dose. Next, liquefied 20 semen samples were divided into three aliquots and diluted in glycerol-egg-yolk-citrate (GEYC) cryopreserved without AFPIII (control), with optimal dose of AFPIII, as well as fresh groups. After thawing, samples were evaluated for plasma membrane integrity (PMI), DNA fragmentation index (DFI), reactive oxygen species (ROS), and total antioxidant capacity (TAC) levels. Spermatozoa treatment with 0.01, 0.1 and 1 μg/ml AFPIII increased the sperm motility and viability compared to the control group, but the highest concentrations were ineffective. In conclusion, the results showed that the addition of AFPIII to GEYC at 1 μg/ml improved motility, PMI, viability and TAC, and decreased ROS and DNA fragmentation of cryopreserved human semen compared to the control group.  相似文献   

4.
5.
Ebertz SL  McGann LE 《Cryobiology》2004,49(2):169-180
A human corneal equivalent is being developed with applications in pharmaceutical testing and biomedical research, but the distribution of this engineered tissue, depends on successful cryopreservation. Cryopreservation of tissues depends on the presence of cryoprotectants, their addition and removal, and exposure to conditions during freezing and thawing, all of which depend on cellular membrane permeabilities to water and cryoprotectant. This study defines the permeability properties that define the rate of water and cryoprotectant movement across the plasma membrane of isolated human corneal endothelial, keratocyte, and epithelial cells. Cells were transferred from isotonic conditions (300 mosm/kg) to 0.5, 1, or 2 M dimethyl sulfoxide and propylene glycol solutions at constant temperature, and cell volumes monitored using an electronic particle counter. Histograms describing cell volume changes over time after cryoprotectant exposure allowed calculation of hydraulic conductivity (Lp), cryoprotectant permeability (Ps), and the reflection coefficient (sigma). Experimental values for Lp and Ps at 4, 13, 22, and 37 degrees C were used to determine the Arrhenius activation energy (Ea). Defining the permeability parameters and temperature dependencies allows simulation of responses of human corneal cells to addition and removal of cryoprotectants and to freezing conditions, allowing amount of supercooling, intracellular electrolyte concentration, and intracellular cryoprotectant concentration to be calculated. Simulations also show that the constituent cells in the bioengineered cornea respond differently to addition and removal of cryoprotectants and to freezing. This study has defined the requirements during cryopreservation for the corneal cells; future work will define the matrix requirements which will allow the development of a cryopreservation protocol.  相似文献   

6.
Ice formation inside or outside cells has been proposed to be a factor causing cryoinjury to cells/tissues during cryopreservation. How to control, reduce, or eliminate the ice formation has been an important research topic in fundamental cryobiology. The objective of this study was to test a hypothesis that the coupled interaction of microwave radiation and cryoprotectant concentration could significantly influence ice formation and enhance potential vitrification in cryopreservation media at a relative slow cooling rate. Test samples consisted of a series of solutions with ethylene glycol (a cryoprotectant) concentration ranging from 3 to 5.5M.A specific microwave resonant cavity was built and utilized to provide an intense oscillating electric field. Solutions were simultaneously exposed to this electric field and cooled to −196°C by rapid immersion in liquid nitrogen. Control samples were similarly submerged in liquid nitrogen but without the microwave field. The amount of ice formation was determined by analysis of digital images of the samples. The morphology of the solidified samples was observed by cryomicroscopy. It was found that ice formation was greatly influenced by microwave irradiation. For example, ice formation could be reduced by roughly 56% in 3.5Methylene glycol solutions. An average reduction of 66% was observed in 4.5Msolutions. Statistical analysis indicated that the main effects of microwave and ethylene glycol concentration as well as the interaction between these two factors significantly (P< 0.01) influenced ice formation amount, confirming the hypothesis. This preliminary study suggests that a combined use of microwave irradiation and cryoprotectant might be a potential approach to control ice formation in cells/tissues during the cooling process and to enhance vitrification of these biomaterials for long-term cryopreservation.  相似文献   

7.
The effect of kaempferol-7-O-glucoside (KF7G), one of the supercooling-facilitating flavonol glycosides which was originally found in deep supercooling xylem parenchyma cells of the katsura tree and was found to exhibit the highest level of supercooling-facilitating activity among reported substances, was examined for successful cryopreservation by vitrification procedures, with the aim of determining the possibility of using diluted vitrification solution (VS) to reduce cryoprotectant toxicity and also to inhibit nucleation at practical cooling and rewarming by the effect of supplemental KF7G. Examination was performed using shoot apices of cranberry and plant vitrification solution 2 (PVS2) with dilution. Vitrification procedures using the original concentration (100%) of PVS2 caused serious injury during treatment with PVS2 and resulted in no regrowth after cooling and rewarming (cryopreservation). Dilution of the concentration of PVS2 to 75% or 50% (with the same proportions of constituents) significantly reduced injury by PVS2 treatment, but regrowth was poor after cryopreservation. It is thought that dilution of PVS2 reduced injury by cryoprotectant toxicity, but such dilution caused nucleation during cooling and/or rewarming, resulting in poor survival. On the other hand, addition of 0.5 mg/ml (0.05% w/v) KF7G to the diluted PVS2 resulted in significantly (p < 0.05) higher regrowth rates after cryopreservation. It is thought that addition of supercooling-facilitating KF7G induced vitrification even in diluted PVS2 probably due to inhibition of ice nucleation during cooling and rewarming and consequently resulted in higher regrowth. The results of the present study indicate the possibility that concentrations of routinely used VSs can be reduced by adding supercooling-facilitating KF7G, by which more successful cryopreservation might be achieved for a wide variety of biological materials.  相似文献   

8.
低温保存对卵母细胞造成渗透损伤、毒性损伤和冰晶损伤,使得细胞冻后质量难以提高.本文首次提出将微流控法添加-去除保护剂分别与三种冷冻载体(OPS、QC及Cryotop)搭配使用,对猪卵母细胞进行冷冻保存,并与传统冷冻法进行比较;然后,首次选用透明陶瓷和玻璃制作集成一体化芯片,对猪卵母细胞进行冷冻保存,以冷冻保存后的细胞存活率和发育率为判断依据,筛选出较好的方案;最后,对冻后卵母细胞的早期凋亡情况、胞内活性氧水平和线粒体膜电位水平进行分析.结果表明,微流控添加-去除保护剂组卵母细胞冻后存活率以及卵裂率都显著高于传统冷冻组,可以有效降低卵母细胞的早期凋亡率和胞内活性氧水平,减小线粒体损伤,提高细胞的冻后质量.透明陶瓷一体化芯片保存卵母细胞得到的存活率和卵裂率与传统OPS冷冻的保存结果无显著差异.微流控芯片技术为卵母细胞的低温保存提供新的思路,有较好的应用前景.  相似文献   

9.
There are no reports on the use of antifreeze proteins (AFP) and antifreeze glycoproteins (AFGP) for the use of bull sperm cryopreservation despite studies in the ram, mouse and chimpanzee. The effect of freezing and thawing on bull sperm viability, osmotic resistance and acrosome integrity were observed following the addition of AFP1, AFPIII and AFGP at four concentrations (0.1, 1, 10 and 100 microg/ml). In a second part of the experiment, fluorescein was conjugated to the AFPs and AFGP and observations were made using fluorescence microscopy to determine whether binding occurred between the sperm cell membranes and the proteins. In the final part of the study the cryopreservation media were cooled in the presence of the AFPs and AFGPs at the four concentrations on a cryomicroscope to mimic similar cooling curves as those used in the presence of sperm. Following freeze-thaw, AFPI resulted in increased osmotic resistant cells at 0.1-10 microg/ml compared to the control (P<0.01). AFPI and AFPIII did bind to the sperm cells. There was no visual difference in ice structure between the control, AFPIII and AFGP but AFPI resulted in parallel crystals at 0.1, 1 and 10 microg/ml. We suggest that the increased osmotic resistance in the spermatozoa cryopreserved in AFPI is due to the cells orientating between the ice crystals, reducing mechanical stress to the cell membrane. Previous research has shown that osmotic resistance correlates with bull fertility, suggesting that bull spermatozoa cryopreserved in the presence of AFPI may have increased fertility in vivo.  相似文献   

10.
《Cryobiology》2009,58(3):242-245
The effect of kaempferol-7-O-glucoside (KF7G), one of the supercooling-facilitating flavonol glycosides which was originally found in deep supercooling xylem parenchyma cells of the katsura tree and was found to exhibit the highest level of supercooling-facilitating activity among reported substances, was examined for successful cryopreservation by vitrification procedures, with the aim of determining the possibility of using diluted vitrification solution (VS) to reduce cryoprotectant toxicity and also to inhibit nucleation at practical cooling and rewarming by the effect of supplemental KF7G. Examination was performed using shoot apices of cranberry and plant vitrification solution 2 (PVS2) with dilution. Vitrification procedures using the original concentration (100%) of PVS2 caused serious injury during treatment with PVS2 and resulted in no regrowth after cooling and rewarming (cryopreservation). Dilution of the concentration of PVS2 to 75% or 50% (with the same proportions of constituents) significantly reduced injury by PVS2 treatment, but regrowth was poor after cryopreservation. It is thought that dilution of PVS2 reduced injury by cryoprotectant toxicity, but such dilution caused nucleation during cooling and/or rewarming, resulting in poor survival. On the other hand, addition of 0.5 mg/ml (0.05% w/v) KF7G to the diluted PVS2 resulted in significantly (p < 0.05) higher regrowth rates after cryopreservation. It is thought that addition of supercooling-facilitating KF7G induced vitrification even in diluted PVS2 probably due to inhibition of ice nucleation during cooling and rewarming and consequently resulted in higher regrowth. The results of the present study indicate the possibility that concentrations of routinely used VSs can be reduced by adding supercooling-facilitating KF7G, by which more successful cryopreservation might be achieved for a wide variety of biological materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号