首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Proteoglycans of developing chick brain were distinguished on the basis of reactivity with four well characterized antibody reagents (S103L, to the CS-rich domain; HNK-1, to 6-sulfated glucuronic acid; 1-C-3, to the HABr region and 5-D-4, to KS chains). One chondroitin sulfate proteoglycan reacted exclusively with S103L and 1-C-3 and not with the other two antibodies, hence is designated the S103L reactive brain CSPG. The other proteoglycan reacted exclusively with HNK-1 and 5-D-4 and not with S103L and 1-C-3, hence it is designated the HNK-1 reactive brain CSPG. In addition to these immunological distinctions, the S103L and HNK-1 CSPGs exhibited significant biochemical differences at both the protein and carbohydrate levels. Most interestingly, both CSPGs were found in all regions of the brain, and were expressed in a developmentally regulated pattern. The S103L CSPG was not detectable prior to embryonic day 7, increased to a maximum at day 13-15 and declined by day 20 in most brain regions examined. In contrast, the HNK-1 CSPG was present as early as embryonic day 4 and remained constant through hatching. Neuronal cultures established from embryonic day 6 (E6) cerebral hemispheres represent an in vitro paradigm that mimics in vivo neuronal development and differentiation. In this culture system we found that the expression of the S103L and HNK-1 CSPG followed a pattern similar to that observed in developing brain and further, that neurons are probably the sole source of S103L CSPG in cerebral cortex during neuroembryogenesis.  相似文献   

2.
Monoclonal antibodies produced against chondroitinase-treated human adult cartilage proteoglycans were selected for their ability to recognize epitopes on native proteoglycans. Binding analyses revealed that four of these monoclonal antibodies (BCD-4, BCD-7, EFG-4 and KPC-190) each recognized a different epitope on the same proteoglycan molecule which represents a subpopulation of a high buoyant density (D1) fraction of human articular cartilage proteoglycans (10, 30, 50 and 60% in fetal-newborn, 1.5 years old, 15 years old and 52-56 years old cartilages, respectively). Analysis of epitope specificities revealed that BCD-7 and EFG-4 monoclonal antibodies recognized epitopes on proteoglycan monomer which are associated with the protein structure in that they are sensitive to cleavage by Pronase, papain and alkali treatment and do not include keratan sulphate, chondroitin sulphate or oligosaccharides. The BCD-4 and KPC-190 epitopes also proved to be sensitive to Pronase or papain digestion or to alkali treatment, but keratanase or endo-beta-galactosidase also reduced the immunoreactivity of these epitopes. These observations indicate that the BCD-4 and KPC-190 epitopes represent peptides substituted with keratan sulphate or keratan sulphate-like structures. The BCD-4 epitope is, however, absent from a keratan sulphate-rich fragment of human adult proteoglycan, while the other three epitopes were detected in this fragment. None of these four epitopes were detected in the link proteins of human cartilage, in the hyaluronic acid-binding region of human newborn cartilage proteoglycan, in Swarm rat chondrosarcoma proteoglycan, in chicken limb bud proteoglycan monomer and in the small dermatan sulphate-proteoglycan of bovine costal cartilage. EFG-4 and KPC-190 epitopes were not detected in human fetal cartilage proteoglycans, although fetal molecules contained trace amounts of epitopes reactive with BCD-4 and BCD-7 antibodies.  相似文献   

3.
Proteoglycan monomers from pig laryngeal cartilage were examined by electron microscopy with benzyldimethylalkylammonium chloride as the spreading agent. The proteoglycans appeared as extended molecules with a beaded structure, representing the chondroitin sulphate chains collapsed around the protein core. Often a fine filamentous tail was present at one end. Substructures within proteoglycan molecules were localized by incubation with specific antibodies followed by Protein A-gold (diameter 4 nm). After the use of an anti-(binding region) serum the Protein A-gold (typically one to three particles) bound at the extreme end of the filamentous region. A small proportion of the labelled molecules (10-15%) showed the presence of gold particles at both ends. A monoclonal antibody specific for a keratan sulphate epitope (MZ15) localized a keratan sulphate-rich region at one end of the proteoglycan, but gold particles were not observed along the extended part of the protein core. This distribution was not changed by prior chondroitin AC lyase digestion of the proteoglycan. Localization with a different monoclonal antibody to keratan sulphate (5-D-4) caused a change in the spreading behaviour of a proportion (approx. 20%) of the proteoglycan monomers that lost their beaded structure and appeared with the chondroitin sulphate chains projecting from the protein core. In these molecules the Protein A-gold localized antibody (5-D-4) along the length of the protein core whereas in those molecules with a beaded appearance it labelled only at one end. Labelling with either of the monoclonal antibodies was specific, as it was inhibited by exogenously added keratan sulphate. The differential localization achieved may reflect structural differences within the proteoglycan population involving keratan sulphate and the protein core to which it is attached. The results showed that by this technique substructures within proteoglycan molecules can be identified by Protein A-gold labelling after the use of specific monoclonal or polyclonal antibodies.  相似文献   

4.
Abstract: We have studied developmental changes in the structure and concentration of the hyaluronic acid-binding proteoglycan, neurocan, and of phosphacan, another major chondroitin sulfate proteoglycan of nervous tissue that represents the extracellular domain of a receptor-type protein tyrosine phosphatase. A new monoclonal antibody (designated 1F6), which recognizes an epitope in the N-terminal portion of neurocan, has been used for the isolation of proteolytic processing fragments that occur together with link protein in a complex with hyaluronic acid. Both link protein and two of the neurocan fragments were identified by amino acid sequencing. The N-terminal fragments of neurocan are also recognized by monoclonal antibodies (5C4, 8A4, and 3B1) to epitopes in the G1 and G2 domains of aggrecan and/or in the hyaluronic acid-binding domain of link protein. The presence in brain of these N-terminal fragments is consistent with the developmentally regulated appearance of the C-terminal half of neurocan, which we described previously. We have also used a slot-blot radioimmunoassay to determine the concentrations of neurocan and phosphacan in developing brain. The levels of both proteoglycans increased rapidly during early brain development, but whereas neurocan reached a peak at approximately postnatal day 4 and then declined to below embryonic levels in adult brain, the concentration of phosphacan remained essentially unchanged after postnatal day 12. Keratan sulfate on phosphacan-KS (a glycoform that contains both chondroitin sulfate and keratan sulfate chains) was not detectable until just before birth, and its peak concentration (at 3 weeks postnatal) was reached ~1 week later than that of the phosphacan core protein. Immunocytochemical studies using monoclonal antibodies to keratan sulfate (3H1 and 5D4) together with specific glycosidases (endo-β-galactosidase, keratanase, and keratanase II) also showed that with the exception of some very localized areas, keratan sulfate is generally not present in the embryonic rat CNS.  相似文献   

5.
After biosynthetic labeling of sulfated glycoproteins in rat and goldfish brain and PC12 pheochromocytoma cells with sodium [35S]sulfate, it was observed that all of the bands reactive with the HNK-1 antibody on immunoblots of sodium dodecyl sulfate-polyacrylamide gels corresponded with sulfate-labeled proteins detected by fluorography. These results support data from other studies, which indicate that the HNK-1 epitope is a 3-sulfo-glucuronic acid residue. In addition to its presence in a wide range of nervous tissue glycoproteins, the HNK-1 epitope was also detected in chromaffin granule membranes, chondroitinase ABC, and in chondroitin sulfate proteoglycans of brain, cartilage, and chondrosarcoma. However, it is not present in the heparan sulfate proteoglycan of brain, or in either of two chondroitin sulfate/dermatan sulfate proteoglycans in the chromaffin granule matrix.  相似文献   

6.
The chondroitin sulfate proteoglycans of brain contain several core proteins bearing HNK-1 antibody epitopes. Endo-beta-galactosidase treatment resulted in the almost complete disappearance of HNK-1 staining of proteoglycan immunoblots, indicating that a significant portion of the 3-sulfated sugar residues recognized by this antibody are present on poly(N-acetyllactosaminyl) oligosaccharides. However, after treatment with chondroitinase ABC followed by endo-beta-galactosidase, several proteoglycan species showed HNK-1 reactivity, presumably due to the presence of this epitope on other oligosaccharides which are both resistant to endo-beta-galactosidase and inaccessible to the antibody in the native proteoglycan. Immunostaining of the endo-beta-galactosidase degradation products after separation by thin-layer chromatography demonstrated that HNK-1 reactivity was confined to a minor population of large oligosaccharides. Only a relatively small portion of the native chondroitin sulfate proteoglycans of brain enter a 6-12% SDS-polyacrylamide gel. However, after treatment of the proteoglycans with chondroitinase ABC (or chondroitinase and endo-beta-galactosidase) in the presence of protease inhibitors, seven bands with molecular sizes ranging from 80 to 200 kDa appear in Coomassie Blue stained gels, and two additional bands with molecular sizes of 67 and 350-400 kDa are apparent in fluorographs of sodium [35S]sulfate labeled proteoglycans. Most of these components probably represent individual proteoglycan species rather than different degrees of nonchondroitin sulfate/keratan sulfate glycosylation of a single protein core, since [35S]methionine-labeled proteins of comparable molecular size were synthesized by an in vitro translation system. These findings suggest that chondroitin sulfate proteoglycans which differ in molecular size and composition may be specific to particular cell types in brain.  相似文献   

7.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Studies have been initiated to identify various cell surface and matrix components of normal human skin through the production and characterization of murine monoclonal antibodies. One such antibody, termed PG-4, identifies both cell surface and matrix antigens in extracts of human foetal and adult skin as the dermatan sulfate proteoglycans, decorin and biglycan, and the chondroitin sulfate proteoglycan versican. Treatment of proteoglycans with chondroitinases completely abolishes immunoreactivity for all of these antigens which suggests that the epitope resides within their glycosaminoglycan chains. Further evidence for the carbohydrate nature of the epitope derives from competition studies where protein-free chondroitin sulfate chains from shark cartilage react strongly; however, chondroitin sulfate chains from bovine tracheal cartilage fail to exhibit a significant reactivity, an indication that the epitope, although present in some chondroitin sulfate chains, does not consist of random chondroitin 4- or 6-sulfate disaccharides. The presence of the epitope on dermatan sulfate chains and on decorin was also demonstrated using competition assays. Thus, PG-4 belongs to a class of antibodies that recognize native epitopes located within glycosaminoglycan chains. It differs from previously described antibodies in this class in that it identifies both chondroitin sulfate and dermatan sulfate proteoglycans. These characteristics make PG-4 a useful monoclonal antibody probe to identify the total population of proteoglycans in human skin.  相似文献   

9.
Keratan sulphate was identified in sheep brain. We describe here the isolation and partial characterization of keratan sulphate from cerebrum, cerebellum and brainstem of young sheep brains. The galactosaminoglycan was isolated by using ion-exchange chromatography and gel filtration after exhaustive digestion with papain of the delipidated tissues, followed by alkaline borohydride degradation and chondroitinase ABC and heparinases I, II and III treatment. The material isolated by ion-exchange chromatography from each tissue was eluted as single but polydispersed peak from Sephadex G-75, with average molecular masses 8.4, 7.9 and 8.8 kDa for cerebrum, cerebellum and brainstem, respectively. Keratanase I and II totally degraded keratan sulphate from cerebrum and brainstem, but only partially that from cerebellum. The content of keratan sulphate was found to be about 215, 173 and 144 microg/g dry delipidated tissue for cerebrum, brainstem and cerebellum, respectively.  相似文献   

10.
The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

11.
Monoclonal antibodies were raised against proteoglycan core protein isolated after chondroitinase ABC digestion of human articular cartilage proteoglycan monomer. Characterization of one of the monoclonal antibodies (1/20/5-D-4) indicated that it specifically recognized an antigenic determinant in the polysaccharide structure of both corneal and skeletal keratan sulfate. Enzyme immunoassay analyses indicated that the mouse monoclonal IgG1 recognized keratan sulfate in native proteoglycan aggregate and proteoglycan monomer preparations isolated from hyaline cartilages of a wide variety of animal species (human, monkey, cow, sheep, chicken, and shark cartilage). The 1/20/5-D-4 monoclonal antibody did not recognize antigenic determinants on proteoglycan isolated from Swarm rat chondrosarcoma. This finding is consistent with several biochemical analyses showing the absence of keratan sulfate in proteoglycan synthesised by this tissue. A variety of substructures isolated after selective cleavage of bovine nasal cartilage proteoglycan (Heineg?rd, D., and Axelsson, J. (1977) J. Biol. Chem. 252, 1971-1979) were used as competing antigens in radioimmunoassays to characterize the specificity of the 1/20/5-D-4 immunoglobulin. Substructures derived from the keratan sulfate attachment region of the proteoglycan (keratan sulfate peptides) showed the strongest inhibition. Both corneal and skeletal keratan sulfate peptides as competing antigens in radioimmunoassays showed similar inhibition when compared on the basis of their glucosamine content. Therefore, the 1/20/5-D-4 monoclonal antibody appears to recognize a common determinant in their polysaccharide moieties. Chemical desulfation of the keratan sulfate reduced the antigenicity of the glycosaminoglycan. The antibody did not recognize determinants present in dermatan sulfate, heparin, heparin sulfate, or hyaluronic acid.  相似文献   

12.
It is known that the mammalian brain contains many kinds of proteoglycans, but almost all of them remain to be characterized. In this study, we prepared a monoclonal antibody against a phosphate-buffered saline-soluble brain proteoglycan (MAb 6B4). MAb 6B4 recognized a 600- to 1000-kDa chondroitin sulfate proteoglycan with a 250-kDa core protein (6B4 proteoglycan). The core protein of 6B4 proteoglycan carried the HNK-1 epitope. Immunohistochemical analysis of the adult rat brain indicated that this proteoglycan was expressed on the cell surfaces of a subset of neurons. In the hindbrain, 6B4 proteoglycan was highly expressed on the cerebellar Purkinje cells and Golgi cells, and at particular nuclei including the pontine nuclei and lateral reticular nucleus. Almost all of these nuclei were connected to the cerebellum through the mossy fiber system. A developmental study indicated that the expression of this proteoglycan changed dramatically during the formation of the cerebellar mossy fiber system. The mossy fibers from the pontine nuclei expressed 6B4 proteoglycan transiently from Embryonic Day 20 (E20) to Postnatal Day 30 (P30), during which time the axonal outgrowth and glomerular synapse formation occurred. The Purkinje cells, glomeruli, and Golgi cells began to be stained with MAb 6B4 from P10, P16, and P20, respectively. These expression stages correspond with the onset of their synapse formation. These results suggest that 6B4 proteoglycan is closely involved in the development of the cerebellar mossy fiber system.  相似文献   

13.
Monoclonal antibodies were prepared that recognize different age-related epitopes on proteoglycan subunits of high buoyant density isolated from human epiphysial and articular cartilages. Antibody EFG-4 (IgG1) recognizes a proteinase-sensitive segment associated with the core protein. Antibody BCD-4 (IgG1) reacts with keratan sulphate bound to core protein. Both epitopes are minimally expressed in foetal cartilage and increase with age after birth to become maximally expressed in adult cartilage by about 30 years of age. In contrast, monoclonal antibody alpha HFPG-846 (IgM) recognizes a core-protein-related epitope that is maximally expressed in young foetal cartilage, declines up to birth and thereafter and is almost absent after about 30 years of age. Antibody alpha HFPG-846 was used to isolate by immuno-affinity chromatography two subpopulations of proteoglycan subunits from a 16-year-old-human cartilage proteoglycan subunit preparation. Only the antibody-unbound population showed a significant reaction with antibodies EGF-4 and BCD-4. The amino acid and carbohydrate compositions of these proteoglycan fractions were different, and one (antibody-bound) resembled those of foetal and the other (antibody-unbound) resembled those of adult proteoglycans isolated from 24-27-week-old-foetal and 52-56-year-old-adult cartilage respectively. These observations demonstrate that human cartilages contain at least two chemically and immunochemically distinct populations of proteoglycans, the proportions and content of which are age-dependent. It is likely that these populations represent the products of different genes, though their heterogeneity may be compounded by the result of different post-translation modifications.  相似文献   

14.
Monoclonal antibody HNK-1-reactive carbohydrate epitope is expressed on proteins, proteoglycans, and sulfoglucuronyl glycolipids (SGGLs). The developmental expression of these HNK-1-reactive antigens was studied in rat cerebellum. The expression of sulfoglucuronyl lacto-N-neotetraosylceramide (SGGL-1) was biphasic with an initial maximum at postnatal day one (PD 1), followed by a second rise in the level at PD 20. The level of sulfoglucuronyl lacto-N-norhexaosyl ceramide (SGGL-2) in cerebellum was low until PD 15 and then increased to a plateau at PD 20. The levels of SGGLs increased during postnatal development of the cerebellum, contrary to their diminishing expression in the cerebral cortex. The expression of HNK-1-reactive glycoproteins decreased with development of the rat cerebellum from PD 1. Several HNK-1-reactive glycoproteins with apparent molecular masses between 150 and 325 kDa were visualized between PD 1 and PD 10. However, beyond PD 10, only two HNK-1-reactive bands at 160 and 180 kDa remained. The latter appeared to be neural cell adhesion molecule, N-CAM-180. A diffuse HNK-1-reactive band seen at the top of polyacrylamide electrophoretic gels was due mostly to proteoglycans. This band increased in its reactivity to HNK-1 between PD 15 and PD 25 and then decreased in the adult cerebellum. The lipid antigens were shown by two complementary methodologies to be localized primarily in the molecular layer and deep cerebellar nuclei as opposed to the granular layer and white matter. A fixation procedure which eliminates HNK-1-reactive epitope on glycoproteins and proteoglycans, but does not affect glycolipids, allowed selective immunoreactivity in the molecular layer and deep cerebellar nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Keratan sulphate (KS) proteoglycans (PGs) are key molecules in the corneal stroma for tissue organisation and transparency. Macular corneal dystrophy (MCD) is a rare, autosomal recessive disease characterised by disturbances in KS expression. MCD is caused by mutations in CHST6, a gene encoding the enzyme responsible for KS sulphation. Sulphated KS is absent in type I disease causing corneal opacity and loss of vision. Genetic studies have highlighted the mutational heterogeneity in MCD, but supportive immunohistochemical studies on corneal KS have previously been limited by the availability of antibodies mostly reactive only with highly sulphated KS epitopes. In this study, we employed four antibodies against specific KS sulphation patterns, including one against unsulphated KS, to investigate their reactivity in a case of MCD compared with normal cornea using high-resolution immunogold electron microscopy. Mutation analysis indicated type I MCD with deletion of the entire open reading frame of CHST6. Contrast enhanced fixation revealed larger PG structures in MCD than normal. Unlike normal cornea, MCD cornea showed positive labelling with antibody to unsulphated KSPG, but was negative with antibodies to sulphated KSPG. These antibodies will thus facilitate high-resolution investigations of phenotypic heterogeneity in support of genetic studies in this disease.  相似文献   

16.
Summary The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using (i) monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and (ii) cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

17.
The influence of (a) antigen structure, (b) type of monoclonal antibody, and (c) antibody bivalency on the immunochemical detection and quantification of keratan sulfate (KS) from aggrecan has been studied. Apparent KS epitope levels were determined by immunoglobulin G (IgG)-enzyme-linked immunosorbent assay (ELISA) in preparations of human aggrecan and in a defined series of lower molecular weight proteoglycan preparations generated by proteolytic and alkali treatment of aggrecan. Gel filtration chromatography showed KS epitope to be preferentially detected in the higher molecular weight fragments of the preparations. In single KS chains the epitope was detected in the chains of higher M(r). The ability of the proteoglycan to inhibit in the IgG-ELISA decreased with a reduction in proteoglycan fragment size, ranging between 6- and 260-fold, depending on the antibody used. This was considered to be a cooperative binding effect. With most antibodies, the sensitivity of the IgG-ELISA (represented by the steepness of the inhibition slope) was also reduced with smaller inhibitor sizes. The lowest limit of detectability (the amount of KS required to generate 20% inhibition) varied by up to 60-fold depending on the antibody used. The use of monovalent Fab fragments instead of the whole IgG anti-KS antibody in the ELISA showed that the bivalency of the antibody also affected the quantitation of the assay. In the Fab-ELISA the assay was found to have an increased detectability (by 9.5-fold with aggrecan as the inhibitor), and the proteoglycan fragments and aggrecan all generated parallel inhibition curves. Although the Fab-ELISA was somewhat influenced by the structural presentation of the KS, this was not apparent for small fragments and single chains. Thus the effects of cooperative binding and antibody valency could be overcome and quantitative data could be obtained for all samples, using papain-digested samples and the Fab-ELISA. Application of this assay to analysis of body fluids showed the KS-containing fragments in synovial fluid, serum, and urine were of different sizes and could be quantified.  相似文献   

18.
Monoclonal antibody (MAb) HNK-1 recognizes a carbohydrate epitope present in certain glycolipids, glycoproteins, and proteoglycans. Five different fixation methods, together with biochemical analyses of the antigens, were evaluated to study immunocytochemical localization of this epitope in layers of adult rat cerebellum; 4% paraformaldehyde/0.5% cetylpyridinium chloride was found to be optimal for overall immunoreactivity, and the antigens were apparent in all cerebellar layers. To differentially localize HNK-1-reactive carbohydrate epitope on proteins vs lipids in cerebellar layers, we tested the effect of 0.2%, 2%, or 4% glutaraldehyde combined with 2% paraformaldehyde (GT/PF) on HNK-1 and other MAb-reactive protein and lipid antigens; 2% or 4% GT/PF significantly reduced or abolished immunoreactivity of MAb HNK-1 and 5F9 (reacting with microtubule-associated protein 2) with cerebellar proteins analyzed on Western blots, but did not decrease HNK-1 reactivity to lipid antigens on HPTLC blots. In cerebellar tissue sections, HNK-1 and 5F9 immunoreactivity was reduced after 2% or 4% GT/PF fixation. However, significant amounts of HNK-1 immunoreactivity remained in molecular layer and deep cerebellar nuclei. GT/PF fixation did not cause significant changes in immunoreactivity patterns of other carbohydrate lipid antigens, such as those that react with MAb A2B5, 7A, and WCC4. Therefore, carbohydrate epitope on lipids, as opposed to that on proteins, may be preferentially detectable by immunocytochemistry after fixation with 2% or 4% GT/PF. The selective localization of HNK-1-reactive carbohydrate in the molecular layer and deep cerebellar nuclei with 2% or 4% GT/PF fixation correlates well with the observed presence of HNK-1-reactive lipids in these areas but not in the granular layer and white matter, as determined by microdissection of the individual layers and biochemical analysis. The application of 2% or 4% GT/PF fixation as a general method for differentiating the same carbohydrate epitope on proteins vs lipids in immunocytochemistry for other tissues and other antibodies remains to be further evaluated.  相似文献   

19.
The HNK-1 carbohydrate epitope is a 3-sulfo-glucuronyl residue attached to lactosamine structures on glycoproteins, proteoglycans, or glycolipids mostly expressed in the nervous system. Here, using monoclonal antibodies against the sulfated HNK-1 carbohydrate epitope, we first examined its distribution in developing and adult kidneys, then its expression in kidneys with tubular necrosis and renal neoplasms. This HNK-1 epitope was expressed in the human, rabbit, and rat, but not mouse kidney. It was detected within a subset of epithelial cells in the renal vesicle and in comma- and S-shaped bodies during early stages of nephrogenesis. In ureteral bud derivatives, the epitope was present transiently in the area where the collecting duct fused with the nephron. In the adult kidney, expression of the HNK-1 epitope became mainly restricted to the thin ascending loop of Henle where this epitope was carried by heparan- and chondro-proteoglycan. In pathological conditions, HNK-1 epitope expression increased dramatically in proximal epithelial tubule cells in kidneys with acute tubular necrosis. In tumors, the HNK-1 epitope was expressed in the epithelial component of nephroblastomas and in a subgroup of papillary renal cell carcinomas. These data suggest that molecules carrying the sulfated HNK-1 carbohydrate epitope may play an important role in critical stages of renal development and in the physiology of thin ascending loop of Henle.  相似文献   

20.
Ependymins, a family of extracellular glycoproteins of goldfish and mammalian brain, were shown to contain N-linked complex glycan chains. These glycoproteins reacted with a monoclonal antibody, HNK-1 which recognizes a membrane antigen on a subset of human lymphocytes, myelin-associated glycoprotein glycoprotein epitope reacting with HNK-1 antibody was previously shown to include a terminal 3-sulfoglucuronosyl residue present in certain glycolipids of the nervous tissue (Chou et al., Biochem. Biophys. Res. Commun. 1985, 128, 383-388). In this report, the presence of glucuronic acid in ependymins was demonstrated by gas-liquid chromatography and mass spectrometry. We suggest that a 3-sulfoglucuronosyl residue may be the common epitope on HNK-1-reactive glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号