首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of cellular immunity in the establishment and progression of immunosuppressive lentivirus infection remains equivocal. To develop a model system with which these aspects of the host immune response can be studied experimentally, we examined the response of cats to a hybrid peptide containing predicted T-and B-cell epitopes from the gag and env genes of feline immunodeficiency virus (FIV). Cats were immunized with an unmodified 17-residue peptide incorporating residues 196 to 208 (from gag capsid protein p24) and 395 to 398 (from env glycoprotein gp120) of the FIV Glasgow-8 strain by using Quil A as an adjuvant. Virus-specific lymphocytotoxicity was measured by chromium-51 release assays. The target cells were autologous or allogeneic skin fibroblasts either infected with recombinant FIV gag vaccinia virus or pulsed with FIV peptides. Effector cells were either fresh peripheral blood mononuclear cells or T-cell lines stimulated with FIV peptides in vitro. Cytotoxic effector cells from immunized cats lysed autologous, but not allogeneic, target cells when they were either infected with recombinant FIV gag vaccinia virus or pulsed with synthetic peptides comprising residues 196 to 205 or 200 to 208 plus 395. Depletion of CD8+ T cells, from the effector cell population abrogated the lymphocytotoxicity. Immunized cats developed an antibody response to the 17-residue peptide immunogen and to recombinant p24. However, no antibodies which recognized smaller constituent peptides could be detected. This response correlated with peptide-induced T-cell proliferation in vitro. This study demonstrates that cytotoxic T lymphocytes specific for FIV can be induced following immunization with an unmodified short synthetic peptide and defines a system in which the protective or pathological role of such responses can be examined.  相似文献   

2.
The effects of a single non-carcinogenic dose of 15 mg/kg methylnitrosourea (MNU) on the immune and hematopoietic systems of adult specific-pathogen-free (SPF) cats were determined. The cell-mediated-immune (CMI) system was markedly suppressed, as evidenced by: (i) Prolonged cutaneous allograft retention time (41-84 days); (ii) Decreased lymphocyte blast transformation response to mitogens (2% of pretreatment response to pokeweed mitogen or concanavalin A) and antigen (12% of untreated control cat response to keyhole limpet hemocyanin); (iii) Reduced number of absolute erythrocyte-rosetting T-cells in the peripheral blood. This immunosuppression lasted at least 3 months, the duration of the experiment. Suppression of the hematopoietic system was also noted as evidenced by: (i) Peripheral lymphopenia lasting 3 months and neutropenia lasting 3 weeks; (ii) Bone marrow hypocellularity lasting 3 weeks; (iii) Hypoplasia of neutrophilic precursors lasting 3 weeks and erythroid precursors lasting 4 days. It was concluded that a single non-carcinogenic dose of MNU induces a prolonged suppression of the CMI system and a brief suppression of hematopoiesis in adult SPF cats. The immunosuppression may in part be responsible for the previously observed increased susceptibility to feline leukemia virus infection and disease of adult SPF cats treated with MNU.  相似文献   

3.
Bovine peripheral blood mononuclear cells (PBMC) were infected with the pathogenic Saudi isolate of rinderpest virus (RPV) in order to identify the cell subpopulation(s) susceptible to active replication of this virus. Flow cytometry analysis, using a monoclonal antibody recognizing the H glycoprotein of RPV, showed that monocytes were the main subpopulation in which the virus replicated, whereas <2% of lymphocytes expressed viral antigen. The activation of PBMC with concanavalin A before infection resulted in an increase in the capacity of lymphocytes to support RPV replication; >90% of CD4+ and CD8+ T lymphocytes expressed viral antigen at 3 days postinfection, although < or = 40% of gamma/delta T cells were productively infected. B-lymphocyte activation with pokeweed mitogen also resulted in increased replication of this virus in these cells, involving up to 40% of B lymphocytes. An enhancement of lymphocyte susceptibility to infection and active replication by RPV was observed upon coculture of RPV-infected PBMC on bovine endothelial cells. Such enhancement was most marked with the B-cell and CD4+ T-cell subpopulations. Contact between lymphocytes and extracellular matrix components did not alter the capacity of RPV to replicate in lymphocytes. This intercellular contact with endothelial cells increased the viability of certain lymphocyte subpopulations, but it alone could not explain the increased sensitivity to RPV. Intercellular signalling, which resulted in interleukin-2 receptor upregulation, probably played a role. In summary, monocytes are the main target for active, productive infection by RPV. Similar replication in lymphocytes depends on their activation state and on contact with accessory cells such as endothelial cells. These characteristics have important implications for virus traffic in vivo and the pathogenesis of this disease.  相似文献   

4.
A full-length feline immunodeficiency virus NCSU1 (FIV-NCSU1) genome (JSY3) was cloned directly from FIV-NCSU1-infected feline CD4+ lymphocyte (FCD4E) genomic DNA and identified by PCR amplification with 5' long terminal repeat, gag, env, and 3' long terminal repeat primer sets. Supernatant from FCD4E cells cocultured with JSY3-transfected Crandell feline kidney (CrFK) cells was used as an inoculum. Cell-free JSY3 virus was cytopathogenic for FCD4E lymphocytes but did not infect CrFK cells in vitro. To determine in vivo infectivity and pathogenesis, six young adult specific-pathogen-free cats were inoculated with cell-free JSY3 virus. Provirus was detected at 2 weeks postinfection (p.i.) and was still detectable at 25 weeks p.i. as determined by gag region PCR-Southern blot analysis of peripheral blood mononuclear cell lysates. Infectious virus was recovered from peripheral blood mononuclear cells at 6 and 25 weeks p.i., and an antibody response to FIV was detected by 4 weeks. In the acute phase of infection, JSY3 provirus was found only in the CD4+ lymphocyte subset; however, by 14 weeks p.i., the greatest provirus burden was detected in B lymphocytes. All six cats were panlymphopenic at 2 weeks p.i., CD4+/CD8+ ratios were inverted by 6 weeks p.i., and five of the six cats developed lymphadenopathy by 10 weeks p.i. To determine if the JSY3 molecular clone caused immunodeficiency similar to that of the parental wild-type FIV-NCSU1, the cats were challenged with the low-virulence ME49 strain of Toxoplasma gondii at 29 weeks p.i. Five of six cats developed clinical signs consistent with generalized toxoplasmosis, and three of six cats developed acute respiratory distress and required euthanasia. Histopathologic examination of the severely affected cats revealed generalized inflammatory reactions and the presence of T. gondii tachyzoites in multiple tissues. None of the six age- and sex-matched specific-pathogen-free cats inoculated with only T. gondii developed clinical disease. Our results suggest that the pathogenesis of the molecularly cloned NCSU1 JSY3 is similar to that of wild-type FIV-NCSU1.  相似文献   

5.
Blood mononuclear cells from 47 cats experimentally infected with feline immunodeficiency virus (FIV) were examined by using monoclonal antibodies directed against feline CD4 and CD8 homologs, a pan-T-cell antigen, and cell surface immunoglobulin. Significant inversion of the CD4+/CD8+ T-cell ratio was observed only in cats that were infected for 18 months or more. This inversion was associated with a decrease in the absolute numbers of CD4+ T cells and a concomitant increase in CD8+ cells. However, the total numbers of circulating T and B cells were not significantly reduced. Cats infected with FIV for 24 to 28 months also had significantly elevated levels of serum immunoglobulin G (IgG), but normal levels of IgA and IgM. The long-term decline in CD4+ T cells and hypergammaglobulinemia observed in FIV-infected cats resemble the abnormalities occurring in humans after human immunodeficiency virus infection.  相似文献   

6.
C3H/HeJ mice, unresponsive to LPS, exhibit a defective ability to mount antibody responses to T-dependent immunogens. The anti-TNP antibody response to TNP-HRBC, a T-dependent immunogen, was found to be lower in these mice as compared to LPS-responsive C3H/HeN mice, whereas the anti-TNP antibody response to TNP-Ficoll, a T-independent immunogen, was of the same magnitude in C3H/HeJ and C3H/HeN mice. An impaired helper activity of C3H/HeJ HRBC-primed spleen cells was demonstrated in a titration assay in which graded numbers of C3H/HeJ or C3H/HeN HRBC-primed spleen cells were added to cultures containing a constant number of unprimed spleen cells from either C3H/HeJ or C3H/HeN mice and the immunogen TNP-HRBC. The reduced helper T-cell activity of C3H/HeJ HRBC-primed spleen cells appears to be independent of macrophage defects, since C3H/HeJ and C3H/HeN macrophages were found equally effective in antigen presentation as evaluated by an in vitro antigen-specific T-cell proliferation assay. The difference in helper T-cell activity between these two substrains probably reflects a lower number and/or proliferation rate of antigen-responsive T cells in C3H/HeJ mice.  相似文献   

7.
Specific-pathogen-free cats, immunized with a 22-amino-acid synthetic peptide designated V3.3 and derived from the third variable region of the envelope glycoprotein of the Petaluma isolate of feline immunodeficiency virus (FIV), developed high antibody titers to the V3.3 peptide and to purified virus, as assayed by enzyme-linked immunoassays, as well as neutralizing antibodies, as assayed by the inhibition of syncytium formation in Crandell feline kidney cells. V3.3-immunized animals and control cats were challenged with FIV and then monitored for 12 months; V3.3 immunization failed to prevent FIV infection, as shown by virus isolation, anti-whole virus and anti-p24 immunoglobulin G antibody responses, and positive PCRs for gag and env gene fragments. Sequence analysis of the V3 region showed no evidence for the emergence of escape mutants that might have contributed to the lack of protection. The sera of the V3.3-hyperimmunized cats and two anti-V3.3 monoclonal antibodies neutralized FIV infectivity for Crandell feline kidney cells at high antibody dilutions but paradoxically failed to completely neutralize FIV infectivity at low dilutions. Moreover, following FIV challenge, V3.3-immunized animals developed a faster and higher antiviral antibody response than control cats. This was probably due to enhanced virus replication, as also suggested by quantitative PCR data.  相似文献   

8.
A high percentage of free-ranging pumas (Felis concolor) are infected with feline lentiviruses (puma lentivirus, feline immunodeficiency virus Pco [FIV-Pco], referred to here as PLV) without evidence of disease. PLV establishes productive infection in domestic cats following parenteral exposure but, in contrast to domestic cat FIV, it does not cause T-cell dysregulation. Here we report that cats exposed to PLV oro-nasally became infected yet rapidly cleared peripheral blood mononuclear cell (PBMC) proviral load in the absence of a correlative specific immune response. Two groups of four specific-pathogen-free cats were exposed to PLV via the mucosal (oro-nasal) or parenteral (i.v.) route. All animals were PBMC culture positive and PCR positive within 3 weeks postinfection and seroconverted without exhibiting clinical disease; however, three or four oro-nasally infected animals cleared circulating proviral DNA within 3 months. Antibody titers reached higher levels in animals that remained persistently infected. PLV antigen-induced proliferation was slightly greater in mucosally inoculated animals, but no differences were noted in cytotoxic T-lymphocyte responses or cytokine profiles between groups. The distribution of virus was predominantly gastrointestinal as opposed to lymphoid in all animals in which virus was detected at necropsy. Possible mechanisms for viral clearance include differences in viral fitness required for crossing mucosal surfaces, a threshold dose requirement for persistence, or an undetected sterilizing host immune response. This is the first report of control of a productive feline or primate lentivirus infection in postnatally exposed, seropositive animals. Mechanisms underlying this observation will provide clues to containment of immunodeficiency disease and could prompt reexamination of vaccine-induced immunity against human immunodeficiency virus and other lentiviruses.  相似文献   

9.
Maternal antibody is the major form of protection from disease in early life when the neonatal immune system is still immature; however, the presence of maternal antibody also interferes with active immunization, placing infants at risk for severe bacterial and viral infection. We tested the ability of intramuscular and gene gun immunization with DNA expressing influenza virus hemagglutinin (HA) and nucleoprotein (NP) to raise protective humoral and cellular responses in the presence or absence of maternal antibody. Neonatal mice born to influenza virus-immune mothers raised full antibody responses to NP but failed to generate antibody responses to HA. In contrast, the presence of maternal antibody did not affect the generation of long-lived CD8(+) T-cell responses to both HA and NP. Thus, maternal antibody did not affect cell-mediated responses but did affect humoral responses, with the ability to limit the antibody response correlating with whether the DNA-expressed immunogen was localized in the plasma membrane or within the cell.  相似文献   

10.
Candidate human immunodeficiency virus type 1 (HIV-1) vaccines designed to elicit T-cell immunity in HIV-1-uninfected persons are under investigation in phase I to III clinical trials. Little is known about how these vaccines impact the immunologic response postinfection in persons who break through despite vaccination. Here, we describe the first comprehensive characterization of HIV-specific T-cell immunity in vaccine study participants following breakthrough HIV-1 infection in comparison to 16 nonvaccinated subjects with primary HIV-1 infection. Whereas none of the 16 breakthrough infections possessed vaccine-induced HIV-1-specific T-cell responses preinfection, 85% of vaccinees and 86% of nonvaccinees with primary HIV-1 infection developed HIV-specific T-cell responses postinfection. Breakthrough subjects' T cells recognized 43 unique HIV-1 T-cell epitopes, of which 8 are newly described, and 25% were present in the vaccine. The frequencies of gamma interferon (IFN-gamma)-secreting cells recognizing epitopes within gene products that were and were not encoded by the vaccine were not different (P = 0.64), which suggests that responses were not anamnestic. Epitopes within Nef and Gag proteins were the most commonly recognized in both vaccinated and nonvaccinated infected subjects. One individual controlled viral replication without antiretroviral therapy and, notably, mounted a novel HIV-specific HLA-C14-restricted Gag LYNTVATL-specific T-cell response. Longitudinally, HIV-specific T cells in this individual were able to secrete IFN-gamma and tumor necrosis factor alpha, as well as proliferate and degranulate in response to their cognate antigenic peptides up to 5 years postinfection. In conclusion, a vaccinee's ability to mount an HIV-specific T-cell response postinfection is not compromised by previous immunization, since the CD8+ T-cell responses postinfection are similar to those seen in vaccine-na?ve individuals. Finding an individual who is controlling infection highlights the importance of comprehensive studies of breakthrough infections in vaccine trials to determine whether host genetics/immune responses and/or viral characteristics are responsible for controlling viral replication.  相似文献   

11.
T-cell subsets were studied by fluorescence-activated cell sorter analysis in 57 feline immunodeficiency virus (FIV)-seropositive cats with naturally acquired FIV infection to see whether CD4(+)-CD8+ alterations were comparable to those observed in human immunodeficiency virus-infected patients. CD4+ values were decreased and CD8+ values were increased. The CD4+/CD8+ ratio was reduced to 1.6, compared with 3.3 in 33 FIV-seronegative control cats. Variance analysis of data showed a significant influence of FIV seropositivity, sex, and spaying of female cats on CD4+ values. CD8+ values were significantly influenced by FIV seropositivity, age, and breed. These findings indicate a similarity between FIV and human immunodeficiency virus infections, as far as alterations of T-cell subsets are concerned.  相似文献   

12.
The FeLV-FAIDS strain of feline leukemia virus consistently induces fatal immunodeficiency. To investigate the immunopathogenesis and viral genetic determinants responsible for the induction of immunodeficiency disease in vivo, we have generated chimeras between the two major viral genomes in the original virus isolate, designated common form clone 61E and major variant clone 61C, which were molecularly cloned directly from DNA of the same animal and tissue. Each of three 61E/C chimeras, containing at minimum a 34-amino-acid segment (including a 6-amino-acid insertion and one amino acid substitution) near the C terminus of the 61C surface glycoprotein (gp70), induced fatal immunodeficiency disease in all (12 of 12) infected animals over a course of 33 +/- 10 weeks. By contrast, animals infected with virus 61E, although persistently antigenemic, remained asymptomatic throughout a 48-week observation period. Beginning 14 weeks after infection, a significant decrease (8 to 10%) in the percent of circulating CD4+ T lymphocytes developed in the 61E/C chimera-infected cats, compared with either 61E-infected or control animals. At this time, no significant changes were seen in CD8 cells, B cells, or mitogen-induced blastogenesis. Prior to this initial decline in CD4 cells, the ability of all antigenemic 61E/C-infected cats to generate a primary antibody response to the T-cell-dependent antigen keyhole limpet hemocyanin was markedly impaired, whereas all 61E-infected cats, one 61E/C-infected but nonviremic cat, and all uninfected control cats produced normal antibody responses. The results reported here demonstrate that a major determinant of in vivo immunodeficiency induction by FeLV-FAIDS is contained within a 34-amino-acid C-terminal segment of its surface glycoprotein and that this gp70 alteration determines the early and persistent deficits in CD4+ T lymphocytes and T-cell-dependent antibody responses. We hypothesize that these early immunologic alterations could result from early deletion of a CD4+ helper T-cell subset.  相似文献   

13.
We have examined the in vitro induction and activity of feline immunodeficiency virus (FIV)-specific cytolytic T cells obtained from cats experimentally infected for 7 to 17 weeks or 20 to 22 months with the Petaluma isolate of FIV. Normal or FIV-infected autologous and allogeneic T lymphoblastoid cells were used as target cells in chromium-51 or indium-111 release assays. When effector cells consisted of either fresh peripheral blood mononuclear cells or concanavalin A- and interleukin-2-stimulated cells, only low levels of cytotoxicity were observed. However, the levels of FIV-specific cytotoxicity were consistently higher in both groups of cats following in vitro stimulation of the effector cells with irradiated, FIV-infected autologous T lymphoblastoid cells and interleukin-2. The effector cells lysed autologous but not allogeneic FIV-infected target cells and were composed predominantly of CD8+ T cells, indicating that the FIV-specific cytotoxicity measured in this system is mediated by CD8+, major histocompatibility complex class I-restricted T cells. These studies show that FIV-specific cytolytic T cells can be detected as early as 7 to 9 weeks postinfection, and they define a system to identify virus-encoded epitopes important in the induction of protective immunity against lentiviruses.  相似文献   

14.
Whole inactivated virus (WIV) vaccines derived from the FL4 cell line protect cats against challenge with feline immunodeficiency virus (FIV). To investigate the correlates of protective immunity induced by WIV, we established an immunization regimen which protected a proportion of the vaccinates against challenge. A strong correlation was observed between high virus neutralizing antibody titers and protection following challenge. To investigate further the immune mechanisms responsible for immunity, all of the vaccinates were rechallenged 35 weeks following the initial challenge. Results of virus isolation from peripheral blood mononuclear cells indicated that 9 of 10 vaccinates were protected from viremia following the second challenge, suggesting that vaccine-induced immunity to FIV persisted for at least 8 months. However, more stringent analysis for evidence of infection revealed that 5 of 10 vaccinates harbored virus in lymphoid tissues. Unlike the protection observed immediately following vaccination, which correlated positively with virus neutralizing antibody titer, the ability to resist a second challenge with FIV was more closely correlated with the induction of Env-specific cytotoxic T-cell activity. The results indicate that both virus-specific humoral immunity and cellular immunity play a role in the protection induced in cats by WIV immunization but their relative importance may be dependent on the interval between vaccination and exposure to virus.  相似文献   

15.
To examine the roles of auxiliary genes and the AP-1 binding site in the long terminal repeat of feline immunodeficiency virus (FIV) in vivo, three mutant viruses, which are defective in the vif gene ([delta]vif), ORF-A gene (deltaORF-A), and AP-1 binding site (deltaAP-1), and wild-type virus as a positive control were separately inoculated into three specific-pathogen-free cats. These cats were assessed by measuring the number of proviral DNA copies in peripheral blood mononuclear cells (PBMCs), the CD4/CD8 ratio and antibody responses to FIV for 16 weeks and then examining histological changes at necropsy. Although viral DNAs were detected in PBMCs from all 12 cats to various degrees until 16 weeks postinoculation, no virus was recovered from PBMCs of cats infected with (delta)vif virus during the observation period. However, a very weak antibody response was induced in one cat infected with the (delta)vif virus. In contrast, despite the successful recovery of virus from both groups of cats infected with deltaORF-A and deltaAP-1 virus, antibody responses and decrease in the CD4/CD8 ratio in the groups were milder than those in cats infected with wild-type virus. Furthermore, the numbers of proviral DNA copies in PBMCs from the two groups were not able to reach the level in cats infected with wild-type virus during the observation period. From these results, we conclude that these mutant viruses are still infectious for cats but failed in efficient viral replication and suggest that these auxiliary genes and enhancer element are important or essential to full viral replication kinetics and presumably to full pathogenicity during the early stage of infection in vivo.  相似文献   

16.
Functional activities that have been ascribed to the nef gene product of simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) include CD4 downregulation, major histocompatibility complex (MHC) class I downregulation, downregulation of other plasma membrane proteins, and lymphocyte activation. Monkeys were infected experimentally with SIV containing difficult-to-revert mutations in nef that selectively eliminated MHC downregulation but not these other activities. Monkeys infected with these mutant forms of SIV exhibited higher levels of CD8(+) T-cell responses 4 to 16 weeks postinfection than seen in monkeys infected with the parental wild-type virus. Furthermore, unusual compensatory mutations appeared by 16 to 32 weeks postinfection which restored some or all of the MHC-downregulating activity. These results indicate that nef does serve to limit the virus-specific CD8 cellular response of the host and that the ability to downregulate MHC class I contributes importantly to the totality of nef function.  相似文献   

17.
In an attempt to determine why high frequencies of circulating virus-specific CD8+ T cells are unable to control human immunodeficiency virus and simian immunodeficiency virus (SIV) replication, we assessed the functional nature of SIV-specific CD8+ lymphocytes. After vaccination and early after infection, nearly all tetramer-staining CD8+ cells produced gamma interferon in response to their specific stimulus. However, by 4 months postinfection with pathogenic SIVmac239, signs of functional impairment in the CD8+ T-cell compartment were detected which might prevent these T cells from efficiently controlling the infection during the chronic phase.  相似文献   

18.
Both CD4(+) and CD8(+) T cells are required for clearance of the murine coronavirus mouse hepatitis virus (MHV) during acute infection. We investigated the effects of an epitope-specific CD8(+) T-cell response on acute infection of MHV, strain A59, in the murine CNS. Mice with CD8(+) T cells specific for gp33-41 (an H-2D(b)-restricted CD8(+) T-cell epitope derived from lymphocytic choriomeningitis glycoprotein) were infected with a recombinant MHV-A59, also expressing gp33-41, as a fusion protein with enhanced green fluorescent protein (EGFP). By 5 days postinfection, these mice showed significantly (approximately 20-fold) lower titers of infectious virus in the brain compared to control mice. Furthermore mice with gp33-41-specific CD8(+) cells exhibited much reduced levels of viral antigen in the brain as measured by immunohistochemistry using an antibody directed against viral nucleocapsid. More than 90% of the viruses recovered from brain lysates of such protected mice, at 5 days postinfection, had lost the ability to express EGFP and had deletions in their genomes encompassing EGFP and gp33-41. In addition, genomes of viruses from about half the plaques that retained the EGFP gene had mutations within the gp33-41 epitope. On the other hand, gp33-41-specific cells failed to protect perforin-deficient mice from infection by the recombinant MHV expressing gp33, indicating that perforin-mediated mechanisms were needed. Virus recovered from perforin-deficient mice did not exhibit loss of EGFP expression and the gp33-41 epitope. These observations suggest that the cytotoxic T-cell response to gp33-41 exerts a strong immune pressure that quickly selects epitope escape mutants to gp33-41.  相似文献   

19.
Cats were immunized with a 46-residue multiepitopic synthetic peptide of feline immunodeficiency virus (FIV) comprising immunodominant epitopes present in the third variable domain of the envelope glycoprotein, transmembrane glycoprotein (TM), and p24 Gag core protein, using Quil A as an adjuvant. All vaccinated cats developed a humoral response which recognized the synthetic peptide immunogen and the intact viral core and envelope proteins. A FIV Gag- and Env-specific effector cytotoxic T-lymphocyte response was also detected in the peripheral blood of vaccinated cats, which peaked at week 30. This response appeared to be major histocompatibility complex restricted. Epitope mapping studies revealed that both the cellular and humoral immune responses were directed principally to a peptide within the TM glycoprotein, CNQNQFFCK. However, vaccination did not confer protection when cats were challenged with the Petaluma isolate of FIV at week 35.  相似文献   

20.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号