首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Monoclonal antibody (mAb) 7E2.2, which recognizes the beta subunit of the hamster fibronectin receptor (FnR) (Brown, P.J., and Juliano, R. L. (1988) Exp. Cell Res. 177. 303), was used to examine the distribution of and to quantify the internalization of the FnR and possibly related integrins on adherent fibroblasts. Purified 7E2.2 IgG was iodinated and used in binding and internalization studies. Binding to Chinese hamster ovary cells was saturable with a Km of 0.3 nM and an estimated total number of cell surface beta subunits at 2 x 10(5) per cell. The FnR colocalized with fibronectin at cell adhesion contact sites and also was distributed evenly over the dorsal cell surface as discrete clusters. By using a direct immunocolloidal gold approach, the FnR was not associated with coated pits at 4 degrees C until internalization followed warming of the labeled cells to 37 degrees C. A proportion of the FnRs were endocytosed with a half-time of 6.5 min and, consistent with clathrin-mediated uptake, this was sensitive to hypertonic conditions. Receptor-immunocomplexes rapidly became localized within coated pits, small diameter tubules, and peripheral endosomes but the majority remained at the cell surface. At subsaturating concentrations of bound 7E2.2, approximately one-fourth of the total cell receptor population resided intracellularly at any one moment following steady-state; however, appreciable degradation of the iodinated mAb was not detected following accumulation for 4 h at 37 degrees C. These data showed that at least a portion of the FnR are endocytosed via a receptor-mediated pathway and suggested that these receptors do not immediately enter a degradative compartment.  相似文献   

2.
Monoclonal antibody (mAb) 7E2.2, which recognizes the β subunit of the hamster fibronectin receptor (FnR) (Brown, P. J. and Juliano, R. L. (1988) Exp. Cell Res. 177, 303), was used to examine the distribution of and to quantify the internalization of the FnR and possibly related integrins on adherent fibroblasts. Purified 7E2.2 IgG was iodinated and used in binding and internalization studies. Binding to Chinese hamster ovary cells was saturable with a Km of 0.3 nM and an estimated total number of cell surface β subunits at 2 × 105 per cell. The FnR colocalized with fibronectin at cell adhesion contact sites and also was distributed evenly over the dorsal cell surface as discrete clusters. By using a direct immunocolloidal gold approach, the FnR was not associated with coated pits at 4 °C until internalization followed warming of the labeled cells to 37 °C. A proportion of the FnRs were endocytosed with a half-time of 6.5 min and, consistent with clathrin-mediated uptake, this was sensitive to hypertonic conditions. Receptor-immunocomplexes rapidly became localized within coated pits, small diameter tubules, and peripheral endosomes but the majority remained at the cell surface. At subsaturating concentrations of bound 7E2.2, approximately one-fourth of the total cell receptor population resided intracellularly at any one moment following steady-state; however, appreciable degradation of the iodinated mAb was not detected following accumulation for 4 h at 37 °C. These data showed that at least a portion of the FnR are endocytosed via a receptor-mediated pathway and suggested that these receptors do not immediately enter a degradative compartment.  相似文献   

3.
The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl-125I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl-125I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The low density microsomes were previously shown to contain intracellular membranes (Oka, Y., and Czech, M.P. (1984) J. Biol. Chem. 259, 8125-8133). The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II, measured by the binding of anti-IGF-II receptor antibody to cells, remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time, as evidenced by a large increase in the photolabeling of intracellular membrane IGF-II receptors when cells are incubated at 37 degrees C with insulin and 4-azidobenzoyl-125I-IGF-II prior to photoactivation; and 3) increases the rate of cellular 125I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody. The results indicate that the action of insulin to elevate the steady state number of cell surface IGF-II receptors leads to an increased internalization flux of IGF-II-bound receptors, mediating increased IGF-II uptake and degradation.  相似文献   

4.
The effects of tumour-promoting phorbol esters on the receptor-mediated endocytosis of insulin were investigated in the human hepatoma cell line HepG2. Treatment of these cells with the biologically active phorbol 12-O-tetradecanoylphorbol 13-acetate (TPA), but not with the non-tumour-promoting analogue 4 alpha-phorbol 12,13-didecanoate, resulted in dramatic morphological changes, which were accompanied by a 1.5-2.5-fold increase in specific 125I-insulin association with the cells at 37 degrees C. This increase in insulin binding was not observed when the binding reaction was performed at 4 degrees C. The potentiation of 125I-insulin association with TPA-treated cells at 37 degrees C could be completely accounted for by an increase in the intracellular pool of internalized insulin; there was no concomitant increase in cell-surface insulin binding. Dissociation studies showed that the enhanced internalization of insulin by cells after treatment with TPA resulted from a decrease in the rate of intracellular processing of the insulin after receptor-mediated endocytosis. The phorbol-ester-induced enhancement of internalized insulin in HepG2 cells was additive with the potentiation of endocytosed insulin induced by both the lysosomotropic reagent chloroquine and the ionophore monensin; this indicates that TPA affects the intracellular processing of the insulin receptor at a point other than those disrupted by either of these two reagents. The potentiation of insulin receptor internalization by tumour-promoting phorbol esters could be completely mimicked by treatment with phospholipase C, but not with phospholipase A, and partially mimicked by treatment with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol. By these criteria, the effects of phorbol esters on the insulin receptor in HepG2 cells appear to be mediated through protein kinase C. These results support the concept that the activation of protein kinase C by treatment with phorbol esters causes a perturbation of the insulin-receptor-mediated endocytotic pathway in HepG2 cells, reflected in a long-term decreased rate of dissociation of internalized insulin by the phorbol-ester-treated cells.  相似文献   

5.
The internalization of CD4, a T cell differentiation antigen and the receptor for the human immunodeficiency viruses (HIV-1 and -2), has been examined in HeLa and murine 3T3 cells transfected with CD4 cDNA. Fab' fragments of the anti-CD4 monoclonal antibody Leu3a were generated by pepsin digestion and used as a specific monovalent, non-crosslinking ligand for CD4. These Fab' fragments were shown to bind to CD4 on the transfected cells with an affinity similar to that of HIV gp120, and inhibited HIV infection of lymphocytic cells. The Fab' fragments were radioiodinated and used in an acid-stripping endocytosis assay to demonstrate that the CD4 expressed on transfected HeLa and NIH3T3 cells was internalized. Approximately 1.5-2% of the total cell-bound [125I]Fab' fragments were internalized per minute. Furthermore, the internalized [125I]Fab' fragments could be shown to recycle to the cell surface. After 30-60 min a steady state was reached between internalization and recycling, with approximately 30-40% of the total cellular CD4 pool residing inside the cell. Similar results were obtained in studies with the intact divalent radiolabelled Leu3a antibody. These data demonstrate that CD4 expressed on transfected non-lymphoid cells is constitutively endocytosed and recycled.  相似文献   

6.
The fate of 125I-labeled transforming growth factor-beta (125I-TGF beta) after binding to its cells surface receptor has been investigated in BALB/c 3T3 mouse fibroblasts. Binding of 125I-TGF beta to cellular receptors at 4 degrees C is pH-sensitive, being markedly decreased at pH less than 6. Most (approximately 90%) of the 125I-TGF beta bound to cells at 4 degrees C can be removed by a brief treatment with acidic medium but is converted into an acid-resistant state rapidly after shifting the cells to 37 degrees C. Cell-bound 125I-TGF beta is degraded at 37 degrees C and the degradation products are released into the medium. The lysosomotropic bases chloroquine, methylamine, and ammonium and the carboxylic ionophore monensin inhibit the degradation and release of 125I-TGF beta from the cells. Cells allowed to accumulate 125I-TGF beta intracellularly by the action of chloroquine or monensin were treated with the bifunctional agent disuccinimidyl suberate in the presence of detergent Triton X-100; this treatment caused the cross-linking of internalized 125I-TGF beta with the 280-kilodalton TGF beta receptor component. Under conditions in which sustained binding and degradation of saturating 125I-TGF beta concentrations occurs, there is no marked decrease in the binding capacity of the cells even when protein synthesis is blocked with cycloheximide. These results indicate that after TGF beta binding the TGF beta:receptor complex becomes rapidly internalized and that TGF beta is directed towards lysosomes where it is degraded and released. However, the cell surface is replenished with TGF beta receptors recycled after internalization or supplied by a large intracellular pool.  相似文献   

7.
We compared the intracellular pathways of the transferrin receptor (TfR) with those of the asialoglycoprotein receptor (ASGPR) and the cation-independent mannose 6-phosphate receptor (MPR)/insulin-like growth factor II receptor during endocytosis in Hep G2 cells. Cells were allowed to endocytose a conjugate of horseradish peroxidase and transferrin (Tf/HRP) via the TfR system. Postnuclear supernatants of homogenized cells were incubated with 3,3'-diaminobenzidine (DAB) and H2O2. Peroxidase-catalyzed oxidation of DAB within Tf/HRP-containing endosomes cross-linked their contents to DAB polymer. The cross-linking efficiency was dependent on the intravesicular Tf/HRP concentration. The loss of detectable receptors from samples of cell homogenates treated with DAB/H2O2 was used as a measure of colocalization with Tf/HRP. To compare the distribution of internalized plasma membrane receptors with Tf/HRP, cells were first surface-labeled with 125I at 0 degrees C. After uptake of surface 125I-labeled receptors at 37 degrees C in the presence of Tf/HRP, proteinase K was used at 0 degrees C to remove receptors remaining at the plasma membrane. Endocytosed receptors were isolated by means of immunoprecipitation. 125I-TfR and 125I-ASGPR were not sorted from endocytosed Tf/HRP. 125I-MPR initially also resided in Tf/HRP-containing compartments, however 70% was sorted from the Tf/HRP pathway between 20 and 45 min after uptake. To study the accessibility of total intracellular receptor pools to endocytosed Tf/HRP, nonlabeled cells were used, and the receptors were detected by means of Western blotting. The entire intracellular TfR population, but only 70 and 50% of ASGPR and MPR, respectively, were accessible to endocytosed Tf/HRP. These steady-state levels were reached by 10 min of continuous Tf/HRP uptake at 37 degrees C. We conclude that 30% of the intracellular ASGPR pool is not involved in endocytosis (i.e., is silent). Double-labeling immunoelectron microscopy on DAB-labeled cells showed a considerable pool of ASGPR in secretory albumin-positive, Tf/HRP-negative, trans-Golgi reticulum. We suggest that this pool represents the silent ASGPR that has been biochemically determined. A model of receptor transport routes is presented and discussed.  相似文献   

8.
We have investigated the dissociation, internalization, and degradation of 125I-interleukin-6 (125I-IL-6) by primary rat hepatocytes. Temperature shift experiments following saturation binding of 125I-IL-6 to cell surface receptors in hepatocytes showed a rapid loss of surface-bound 125I-IL-6 (t1/2 = 15 min), concomitant with a rapid rise in internalized radiolabeled ligand. After reaching a maximum by 30 min at 37 degrees C, the level of internalized 125I-IL-6 decreased with time and appeared in the culture media in a non-trichloroacetic acid-precipitable (degraded) state. The addition of the lysosomotropic agent chloroquine inhibited this receptor-mediated degradation of IL-6 without affecting ligand internalization. Polyacrylamide gel electrophoresis analysis of internalized 125I-IL-6 confirms these results. Additionally, we show that the IL-6.IL-6 receptor complex is stable, and dissociation of these two molecular species occurs at a pH below 5.0. In contrast to published results, data presented in this study clearly indicate that IL-6 is rapidly internalized and degraded within hepatocytes by a receptor-mediated mechanism.  相似文献   

9.
Receptor-mediated uptake and degradation of 125I-asialoorosomucoid (ASOR) in human hepatoma HepG2 cells is inhibited by the lysosomotropic amines chloroquine and primaquine. In the absence of added ligand at 37 degrees C, these amines induce a rapid (t1/2 5.5-6 min) and reversible loss of cell surface 125I-ASOR binding sites as well as a rapid decrease in 125I-ASOR uptake and degradation. There is no effect of these amines on the binding of 125I-ASOR to the cell surface at 4 degrees C or on the rate of internalization of prebound 125I-ASOR. The loss of 125I-ASOR surface binding at 37 degrees C is not attributable to altered affinity of ligand-receptor binding. In the presence of added ligand at 37 degrees C, there is a more rapid (t1/2 2.5-3 min) loss of hepatoma cell surface receptors. In addition, the amines inhibit the rapid return of the internalized receptor to the cell surface. We examined the nature of this loss of 125I-ASOR surface binding sites by following the fate of receptor molecules after biosynthetic labeling and after cell surface iodination. At 37 degrees C, chloroquine and primaquine induce a loss of asialoglycoprotein receptor molecules from the hepatoma cell surface to an internal pool.  相似文献   

10.
Phorbol 12-myristate 13-acetate (PMA) was used to examine the role of insulin receptor phosphorylation in the regulation of insulin receptor internalization in vascular endothelial cells. Association of 125I-insulin in rat capillary and bovine aortic endothelial cells preincubated with PMA was increased by 80 and 64% over control, respectively. The increase was due to enhanced 125I-insulin internalization as opposed to an effect on surface-bound hormone. PMA had no significant effect on 125I-insulin degradation or on release of internalized insulin from the cells. Internalization of 125I-labeled insulin receptor was determined by the resistance of labeled receptor to trypsinization. At 10 degrees C, nearly all of the labeled receptor was sensitive to removal by trypsin, indicating that it was exposed on the cell surface. Exposure of labeled cells to insulin (100 nM) at 37 degrees C resulted in the rapid appearance of trypsin-resistant insulin receptor, indicating receptor internalization. Steady state for receptor internalization was attained at 10-15 min. When surfaced-labeled cells were preincubated with PMA at 37 degrees C, the rate of insulin receptor internalization was increased by 3.6 +/- 0.2-fold and 2.1 +/- 0.5-fold at 1 and 5 min of insulin exposure, respectively (ED50 at 16 nM PMA). This effect of PMA was associated with an increase in serine phosphorylation of the insulin receptor. Thus, PMA increased insulin internalization in the endothelial cells by modulating the insulin-induced internalization of the receptor. The additive effects of PMA and insulin on insulin receptor phosphorylation suggest that the phorbol ester and insulin act via independent signaling mechanisms.  相似文献   

11.
The binding and subsequent intracellular processing of transferrin and transferrin receptors was studied in A431 cells using 125I-transferrin and a monoclonal antibody to the receptor (ATR) labeled with 125I and gold colloid. Using 125I-transferrin we have shown that, whereas at 37 degrees C uptake proceeded linearly for up to 60 min, most of the ligand that was bound was internalized and then rapidly returned to the incubation medium undegraded. At 37 degrees C, the intracellular half- life of the most rapidly recycled transferrin was 7.5 min. 125I-ATR displayed the same kinetics of uptake but following its internalization at 37 degrees C, it was partially degraded. At 22 degrees C and below, the intracellular degradation of 125I-ATR was selectively inhibited and as a result it accumulated intracellularly. Electron microscopy of conventional thin sections and of whole-cell mounts was used to follow the uptake and processing of transferrin receptors labeled with ATR- gold colloid complexes. Using a pulse-chase protocol, the intracellular pathway followed by internalized ATR gold-receptor complexes was outlined in detail. Within 5 min at 22 degrees C the internalized complexes were transferred from coated pits on the cell surface to a system of narrow, branching cisternae within the peripheral cytoplasm. By 15 min they reached larger, more dilated elements that, in thin section, appeared as irregular profiles containing small (30-50-nm diam) vesicles. By 30 min, the gold complexes were located predominantly within typical spherical multivesicular bodies lying in the peripheral cytoplasm, and by 40-60 min, they reached a system of cisternal and multivesicular body elements in the juxtanuclear area. At 22 degrees C, no other compartments became labeled but if they were warmed to 37 degrees C the gold complexes were transferred to lysosome- like elements. Extracting ATR-gold complexes with Triton X after a 30- min chase at 22 degrees C and purifying them on Sepharose-transferrin indicated that the internalized complexes remained bound to the transferrin receptor during their intracellular processing.  相似文献   

12.
We have used an iodinated, photoreactive analog of insulin, 125I-B2(2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, to covalently label insulin receptors on the cell surface of isolated rat adipocytes. Following internalization of the labeled insulin-receptor complexes at 37 degrees C, we measured the rate and extent of recycling of these complexes using trypsin to distinguish receptors on the cell surface from those inside the cell. The return of internalized photoaffinity-labeled receptors to the cell surface was very rapid at 37 degrees C proceeding with an apparent t 1/2 of 6 min. About 95% of the labeled receptors present in the cell 20 min after the initiation of endocytosis returned to the cell surface by 40 min. Recycling was slower at 25 and 16 degrees C compared to 37 degrees C and essentially negligible at 12 degrees C or in the presence of energy depleters. Addition of excess unlabeled insulin had no effect on the recycling of photoaffinity-labeled insulin receptor complexes, whereas monensin, chloroquine, and Tris partially inhibited this process. These data indicate that dissociation of insulin from internalized receptors is not necessary for insulin receptor recycling. Furthermore, agents which have been shown to prevent vesicular acidification inhibit the recycling of insulin receptors by a mechanism other than prevention of ligand dissociation.  相似文献   

13.
This study demonstrates internalization of interleukin-1 (IL-1) via its cell surface receptor on human diploid fibroblasts and shows intracellular localization of IL-1 beta. Binding experiments at 8 degrees C using confluent fibroblast monolayers revealed 5,000-15,000 IL-1 receptors/cell that bound both IL-1 alpha and IL-1 beta. Incubation of monolayers with 125I-IL-1 beta (10(-9) M) at 8 degrees C and then at 37 degrees C for various times up to 8 h revealed a t1/2 for internalization of receptor-bound IL-1 beta of about 1.5 h. In addition, it was shown that IL-1 beta internalized via receptors was undegraded and retained binding activity. Electron microscopic autoradiography of monolayers incubated with 125I-IL-1 beta, as above, showed a progressive increase in the ratio of cytoplasmic to cell surface-associated grains. Grains at the cell surface were primarily localized at cell processes or attachment sites, frequently close to intra- and extracellular filamentous material. During incubation at 37 degrees C, most grains were free in the cytoplasm, with few present in lysosomes or vesicles. After 1 h, approximately 15% of the grains were over nuclei. Control cultures incubated at 37 degrees C with 125I-IL-1 beta and 100-fold excess unlabeled IL-1 beta showed increased uptake of label into lysosomes and little into nuclei. This study shows that IL-1 receptors are primarily located at fibroblast processes and that receptor-mediated internalization of the ligand is slow. Nuclear localization apparently requires IL-1 receptor-specific internalization of IL-1 beta, suggesting a possible role for this process in eliciting the IL-1 signal.  相似文献   

14.
Degradative processing of internalized insulin in isolated adipocytes   总被引:9,自引:0,他引:9  
Based on the distribution of 125I-insulin between the cell surface and the cell interior, it was found that insulin rapidly binds (t 1/2 = 0.4 min) to surface receptors at 37 degrees C, and after an initial lag period of about 1 min, accumulates intracellularly until steady state is reached (t 1/2 = 3.5 min). At this time about 40% of the total cell-associated 125I-insulin resides in the cell interior reflecting a dynamic equilibrium between the rate of insulin endocytosis and the rate at which internalized insulin is processed and extruded from cells. Since this percentage decreased to 15% at 16 degrees C, it appears that internalization is more temperative-sensitive than the intracellular processing of insulin. When 125I-insulin was preloaded into the cell interior, it was found that internalized insulin was rapidly released to the medium at 37 degrees C (t 1/2 = 6.5 min) and consisted of both degraded products and intact insulin (as assessed by trichloroacetic acid precipitability and column chromatography). Since 75% of internalized insulin was ultimately degraded, and 25% was released intact, this indicates that degradation is the predominant pathway. To determine when incoming insulin enters a degradative compartment, cells were continually exposed to 125I-insulin and the composition of insulin in the cell interior over time was assessed. After 2 min all endocytosed insulin was intact, between 2-3 min degradation products began accumulating intracellularly, and by 15 min equilibrium was reached with 20% of internalized insulin consisting of degraded products. Degraded insulin was then released from the cell interior within 4-5 min after endocytotic uptake, since this was the earliest time chloroquine was found to inhibit the release of degradation products. Moreover, the final release of degraded insulin was not inhibitable by the energy depleter dinitrophenol. Thus, within the degradative pathway, insulin enters lysosomes by 2.5-3 min and is released to the medium by simple diffusion after an additional 1.5-2 min.  相似文献   

15.
The fate of 125I-labeled heparin binding growth factor I (125I-HBGF-I) after binding to its cell surface receptor has been studied using murine lung capillary endothelial cells (LEII). Binding of 125I-HBGF-I to its receptor at 4 degrees C shows pH dependence with optimal binding at pH 6.5-7.5. The majority (approximately 80%) of 125I-HBGF-I bound to cells at 4 degrees C can be removed by washing with low pH medium, but rapidly becomes acid resistant upon shifting cells to 37 degrees C, with 50% of the 125I-HBGF-I becoming acid resistant after 20 minutes. Electrophoretic analysis of internalized 125I-HBGF-I shows that degradation begins approximately 2 hours after internalization with the appearance of two major labeled fragments of Mr 15,000 and Mr 10,000. Degradation of internalized 125I-HBGF-I is inhibited by the lysosomotropic agent chloroquine. These data suggest that cell-associated 125I-HBGF-I is rapidly internalized and directed to a lysosomal cellular compartment where it is slowly degraded.  相似文献   

16.
Cultured extrahepatic cells possess a specific high affinity receptor for high density lipoprotein (HDL) that is induced by cholesterol delivery to cells. Current results suggest that HDL receptors on cultured human fibroblasts and mouse peritoneal macrophages promote reversible binding of HDL to the cell surface without internalization of lipoprotein particles. When 125I-HDL3 was bound to cultured cells at 0 degrees C and then warmed to 37 degrees C after removal of unbound lipoprotein, most of the cell surface-bound HDL was released rapidly (t1/2 = 3 min) into the medium without entering a cellular pool that was inaccessible to digestion by trypsin at 0 degrees C. This lack of internalization of HDL was evident under conditions where internalization of 125I-low density lipoprotein and 125I-transferrin were readily detected. When cells were exposed to 125I-HDL3 at 37 degrees C, only a trace amount of iodinated apoprotein remained associated with cells after treatment of cells with trypsin. Fibroblasts treated with medium containing increasing concentrations of cholesterol exhibited a dose-dependent increase in reversible, trypsin-sensitive binding of 125I-HDL3 at 37 degrees C without an attendant increase in trypsin-resistant binding. These results suggest that reversible binding of HDL to its cell-surface receptor without subsequent endocytosis of receptor-HDL complexes is the mechanism by which HDL receptors facilitate cholesterol transport from cells.  相似文献   

17.
The regulation of interleukin 1 (IL 1) receptor expression on a human large granular lymphocyte cell line, YT, and fate of internalized 125I-labeled IL 1 beta (125I-IL 1 beta) were studied. YT cells were selected for this study, because this cell line expresses a large number of specific high-affinity receptor for IL 1, responds biologically to exogenously added IL 1 by expressing high-affinity IL 2 receptors, and does not produce IL 1. YT cells constitutively express approximately 7 X 10(3) IL 1 receptors/cell with a Kd approximately 10(-10) M. Neither IL 2, phorbol myristic acid, nor lipopolysaccharide affected the total binding of 125I-IL 1 beta by YT cells. In contrast, the capacity of YT cells to bind 125I-IL 1 beta when incubated at 37 degrees C for 3 to 16 hr with a low dose of purified IL 1 beta (approximately 6 U/ml) was reduced by greater than 80%. The loss of binding capability gradually recovered by 16 hr after removal of IL 1 beta from cultured YT cells. The apparent loss of IL 1 receptor expression was accompanied by the internalization of 125I-IL 1 beta into cells. Acid treatment of YT cells to remove bound 125I-IL 1 beta at 4 degrees C showed that 50% of the 125I-IL 1 beta bound to cells could no longer be recovered after 30 min at 37 degrees C, and this increased to 80% after 3 hr at 37 degrees C. Fractionation of cell extracts on Percoll gradient additionally showed 125I-IL 1 beta to appear intracellularly after receptor binding on plasma membranes, and to be successively transferred to some membranous organelles (d approximately equal to 1.037) through an intermediate density organelle (d approximately equal to 1.050), and to finally end up in lysosomal cell fractions (d approximately equal to 1.05 to 1.08) after approximately 3 hr at 37 degrees C. Only approximately 5% of internalized 125I-IL 1 beta was released into culture media by 6 hr of incubation at 37 degrees C. However, the radioactivity in the TCA soluble fraction of the culture media increased gradually by 6 hr and a lysosomotropic enzyme, ethylamine, significantly inhibited both the transfer of internalized 125I-IL 1 beta to the lysosomal fraction and the degradation of 125I-IL 1 beta. This study represents the first evidence of autoregulation of IL 1 receptors by IL 1 and internalization of IL 1 molecules after binding to receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The colony-stimulating factor, CSF-1, stimulates cultured quiescent murine bone marrow-derived macrophages (BMM) to enter DNA synthesis with a lag phase of 10-12 h. The binding, dissociation, internalization, and degradation of 125I-CSF-1 by BMM during the lag phase were investigated. Quiescent BMM express approximately 5 X 10(4) cell surface receptor sites/cell but contain additional cryptic sites (approximately 10(5)/cell) that can appear at the cell surface within 10 min at 37 degrees C. Studies of the binding reaction at both 2 degrees C (Kd less than or equal to 2 X 10(-13) M) and 37 degrees C (Kd approximately 4 X 10(-10) M) are consistent with the existence of a single class of cell surface sites. The disappearance of cell surface 125I-CSF-1 following a 2-37 degrees C temperature shift results from two, competitive, first order processes, internalization and dissociation. Internalization (t1/2 = 1.6 min) is 6 times more frequent than dissociation (t1/2 = 9.6 min). Following internalization, 10-15% of the intracellular CSF-1 is rapidly degraded whereas the remaining 85-90% is slowly degraded by a chloroquin-sensitive first order process (t1/2 greater than 3.5 h). These findings were confirmed and extended by studies of the uptake of 125I-CSF-1 at 37 degrees C. Following addition of 125I-CSF-1, cell surface receptors are rapidly down-regulated (t1/2 approximately 7 min) and their replacement does not commence until 20-60% of pre-existing surface receptor sites have disappeared. Despite receptor replacement, initially from the cryptic pool and later by de novo synthesis and/or receptor recycling (4 molecules/cell/s at steady state), the number of receptors at the cell surface remains low. The process results in the intracellular accumulation of large amounts of 125I-CSF-1 (greater than 10(5) molecules/cell) by BMM. Thus, whereas the kinetics of association, dissociation, and internalization of CSF-1 with BMM and peritoneal exudate macrophages are similar, BMM, which exhibit a higher proliferative response, degrade growth factor 12 times more slowly.  相似文献   

19.
The movements of mouse MHC-encoded class II (H-2E) and class I (H-2K), transferrin receptor and surface Ig molecules of B lymphocytes were studied using radiolabeled mAb and electron microscopy. A total of 10 to 20% of antibodies specific for H-2E molecules were gradually internalized with a t 1/2 of 15 min, reaching a plateau after 30 min at 37 degrees C. Equivalent results were obtained either with the whole antibody or Fab' fragments, suggesting that the internalization of class II molecules was spontaneous. Similar results were obtained with antibodies specific for the transferrin receptor, of which 50% were internalized with t 1/2 of 5 min, reaching a plateau after 30 min. In contrast to antibodies specific for H-2E molecules and the transferrin receptor, antibodies specific for H-2K were not internalized. Reappearance of internalized H-2E-specific antibodies at the cell surface was observed at 37 degrees C. When compared to antibodies specific for surface Ig, degradation of antibodies specific for H-2E molecules was limited even after 5 h incubation. Neither ammonium chloride nor cycloheximide inhibited internalization and recycling. Electron microscopy showed that internalization of H-2E molecules occurred via coated pits/coated vesicles. These results indicate that class II molecules are spontaneously internalized and recycled by B lymphocytes.  相似文献   

20.
In this study, we have demonstrated that a murine T cell lymphoma, EL 4, and a murine fibroblast cell line, Swiss 3T3, possess a single class of high affinity interleukin 1 (IL 1) receptors that exist in a dynamic state of equilibrium that is influenced by IL 1. In the absence of IL 1, the IL 1 receptor appears to turnover with a t1/2 of approximately 11 hr. However, when cells are incubated in the presence of IL 1, the IL 1 receptor undergoes extensive ligand-induced down-regulation. IL 1 itself is internalized at 37 degrees C; 50% of the surface-bound IL 1 is internalized in 60 to 120 min. IL 1 does not undergo degradation for at least 6 hr after internalization. By using electron microscopy and autoradiography, we observed several important features of the internalization process. When cells having bound 125I-IL 1 at 4 degrees C were shifted to 37 degrees C, IL 1 moved from the cell membrane to the cytoplasm where it was found in proximity to nuclei or within lysosomes. IL 1 appeared to progressively accumulate in nuclei. Six hours after shifting cells to 37 degrees C, 30 to 35% of the internalized 125I-IL 1 is associated with the cell nucleus. The accumulation of relatively high levels of IL 1 in the nucleus raises the interesting possibility that IL 1 may not only interact in a highly specific manner with cell surface receptors, but also with potentially important nuclear receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号