首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Jiancong Xu 《BBA》2008,1777(2):196-201
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site.  相似文献   

2.
Heme-copper oxidases (HCOs) are terminal electron acceptors in aerobic respiration. They catalyze the reduction of molecular oxygen to water with concurrent pumping of protons across the mitochondrial and bacterial membranes. Protons required for oxygen reduction chemistry and pumping are transferred through proton uptake channels. Recently, the crystal structure of the first C-type member of the HCO superfamily was resolved [Buschmann et al. Science 329 (2010) 327–330], but crystallographic water molecules could not be identified. Here we have used molecular dynamics (MD) simulations, continuum electrostatic approaches, and quantum chemical cluster calculations to identify proton transfer pathways in cytochrome cbb3. In MD simulations we observe formation of stable water chains that connect the highly conserved Glu323 residue on the proximal side of heme b3 both with the N- and the P-sides of the membrane. We propose that such pathways could be utilized for redox-coupled proton pumping in the C-type oxidases. Electrostatics and quantum chemical calculations suggest an increased proton affinity of Glu323 upon reduction of high-spin heme b3. Protonation of Glu323 provides a mechanism to tune the redox potential of heme b3 with possible implications for proton pumping.  相似文献   

3.
Guanylthiourea (GTU) has been identified as an important antifolate antimalarial pharmacophore unit, whereas, 4-amino quinolones are already known for antimalarial activity. In the present work molecules carrying 4-aminoquinoline and GTU moiety have been designed using molecular docking analysis with PfDHFR enzyme and heme unit. The docking results indicated that the necessary interactions (Asp54 and Ile14) and docking score (−9.63 to −7.36 kcal/mmol) were comparable to WR99210 (−9.89 kcal/mol). From these results nine molecules were selected for synthesis. In vitro analysis of these synthesized compounds reveal that out of the nine molecules, eight show antimalarial activity in the range of 0.61–7.55 μM for PfD6 strain and 0.43–8.04 μM for PfW2 strain. Further, molecular dynamics simulations were performed on the most active molecule to establish comparative binding interactions of these compounds and reference ligand with Plasmodium falciparum dihydrofolate reductase (PfDHFR).  相似文献   

4.
Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.  相似文献   

5.
Specific protein-lipid interactions have been identified in X-ray structures of membrane proteins. The role of specifically bound lipid molecules in protein function remains elusive. In the current study, we investigated how phospholipids influence catalytic, spectral and electrochemical properties of the yeast respiratory cytochrome bc1 complex and how disruption of a specific cardiolipin binding site in cytochrome c1 alters respiratory supercomplex formation in mitochondrial membranes. Purified yeast cytochrome bc1 complex was treated with phospholipase A2. The lipid-depleted enzyme was stable but nearly catalytically inactive. The absorption maxima of the reduced b-hemes were blue-shifted. The midpoint potentials of the b-hemes of the delipidated complex were shifted from − 52 to − 82 mV (heme bL) and from + 113 to − 2 mV (heme bH). These alterations could be reversed by reconstitution of the delipidated enzyme with a mixture of asolectin and cardiolipin, whereas addition of the single components could not reverse the alterations. We further analyzed the role of a specific cardiolipin binding site (CLi) in supercomplex formation by site-directed mutagenesis and BN-PAGE. The results suggested that cardiolipin stabilizes respiratory supercomplex formation by neutralizing the charges of lysine residues in the vicinity of the presumed interaction domain between cytochrome bc1 complex and cytochrome c oxidase. Overall, the study supports the idea, that enzyme-bound phospholipids can play an important role in the regulation of protein function and protein-protein interaction.  相似文献   

6.
Archaeal ribulose 1, 5-bisphospate carboxylase/oxygenase (RubisCO) is differentiated from other RubisCO enzymes and is classified as a form III enzyme, as opposed to the form I and form II RubisCOs typical of chemoautotrophic bacteria and prokaryotic and eukaryotic phototrophs. The form III enzyme from archaea is particularly interesting as several of these proteins exhibit unusual and reversible sensitivity to molecular oxygen, including the enzyme from Archaeoglobus fulgidus. Previous studies with A. fulgidus RbcL2 had shown the importance of Met-295 in oxygen sensitivity and pointed towards the potential significance of another residue (Ser-363) found in a hydrophobic pocket that is conserved in all RubisCO proteins. In the current study, further structure/function studies have been performed focusing on Ser-363 of A. fulgidus RbcL2; various changes in this and other residues of the hydrophobic pocket point to and definitively establish the importance of Ser-363 with respect to interactions with oxygen. In addition, previous findings had indicated discrepant CO2/O2 specificity determinations of the Thermococcus kodakaraensis RubisCO, a close homolog of A. fulgidus RbcL2. It is shown here that the T. kodakaraensis enzyme exhibits a similar substrate specificity as the A. fulgidus enzyme and is also oxygen sensitive, with equivalent residues involved in oxygen interactions.  相似文献   

7.
The E-pathway of transmembrane proton transfer has been demonstrated previously to be essential for catalysis by the diheme-containing quinol:fumarate reductase (QFR) of Wolinella succinogenes. Two constituents of this pathway, Glu-C180 and heme bD ring C (bD-C-) propionate, have been validated experimentally. Here, we identify further constituents of the E-pathway by analysis of molecular dynamics simulations. The redox state of heme groups has a crucial effect on the connectivity patterns of mobile internal water molecules that can transiently support proton transfer from the bD-C-propionate to Glu-C180. The short H-bonding paths formed in the reduced states can lead to high proton conduction rates and thus provide a plausible explanation for the required opening of the E-pathway in reduced QFR. We found evidence that the bD-C-propionate group is the previously postulated branching point connecting proton transfer to the E-pathway from the quinol-oxidation site via interactions with the heme bD ligand His-C44. An essential functional role of His-C44 is supported experimentally by site-directed mutagenesis resulting in its replacement with Glu. Although the H44E variant enzyme retains both heme groups, it is unable to catalyze quinol oxidation. All results obtained are relevant to the QFR enzymes from the human pathogens Campylobacter jejuni and Helicobacter pylori.  相似文献   

8.
A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.  相似文献   

9.
Cytochrome c oxidase is a redox-driven proton pump, which couples the reduction of oxygen to water to the translocation of protons across the membrane. The recently solved x-ray structures of cytochrome c oxidase permit molecular dynamics simulations of the underlying transport processes. To eventually establish the proton pump mechanism, we investigate the transport of the substrates, oxygen and protons, through the enzyme. Molecular dynamics simulations of oxygen diffusion through the protein reveal a well-defined pathway to the oxygen-binding site starting at a hydrophobic cavity near the membrane-exposed surface of subunit I, close to the interface to subunit III. A large number of water sites are predicted within the protein, which could play an essential role for the transfer of protons in cytochrome c oxidase. The water molecules form two channels along which protons can enter from the cytoplasmic (matrix) side of the protein and reach the binuclear center. A possible pumping mechanism is proposed that involves a shuttling motion of a glutamic acid side chain, which could then transfer a proton to a propionate group of heme α3. Proteins 30:100–107, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.  相似文献   

11.
Proteins encounter frequent molecular interactions in biological environments. Computer simulations have become an increasingly important tool in providing mechanistic insights into how such interactions in vivo relate to their biological function. The review here focuses on simulations describing protein assembly and molecular crowding effects as two important aspects that are distinguished mainly by how specific and long-lived protein contacts are. On the topic of crowding, recent simulations have provided new insights into how crowding affects protein folding and stability, modulates enzyme activity, and affects diffusive properties. Recent studies of assembly processes focus on assembly pathways, especially for virus capsids, amyloid aggregation pathways, and the role of multivalent interactions leading to phase separation. Also, discussed are technical challenges in achieving increasingly realistic simulations of interactions in cellular environments.  相似文献   

12.
The rotation of F1Fo-ATP synthase is powered by the proton motive force across the energy-transducing membrane. The protein complex functions like a turbine; the proton flow drives the rotation of the c-ring of the transmembrane Fo domain, which is coupled to the ATP-producing F1 domain. The hairpin-structured c-protomers transport the protons by reversible protonation/deprotonation of a conserved Asp/Glu at the outer transmembrane helix (TMH). An open question is the proton transfer pathway through the membrane at atomic resolution. The protons are thought to be transferred via two half-channels to and from the conserved cAsp/Glu in the middle of the membrane. By molecular dynamics simulations of c-ring structures in a lipid bilayer, we mapped a water channel as one of the half-channels. We also analyzed the suppressor mutant cP24D/E61G in which the functional carboxylate is shifted to the inner TMH of the c-protomers. Current models concentrating on the “locked” and “open” conformations of the conserved carboxylate side chain are unable to explain the molecular function of this mutant. Our molecular dynamics simulations revealed an extended water channel with additional water molecules bridging the distance of the outer to the inner TMH. We suggest that the geometry of the water channel is an important feature for the molecular function of the membrane part of F1Fo-ATP synthase. The inclination of the proton pathway isolates the two half-channels and may contribute to a favorable clockwise rotation in ATP synthesis mode.  相似文献   

13.
After biosynthesis, an evolutionarily conserved acyl chain remodeling process generates a final highly homogeneous and yet tissue-specific molecular form of the mitochondrial lipid cardiolipin. Hence, cardiolipin molecules in different organisms, and even different tissues within the same organism, contain a distinct collection of attached acyl chains. This observation is the basis for the widely accepted paradigm that the acyl chain composition of cardiolipin is matched to the unique mitochondrial demands of a tissue. For this hypothesis to be correct, cardiolipin molecules with different acyl chain compositions should have distinct functional capacities, and cardiolipin that has been remodeled should promote cardiolipin-dependent mitochondrial processes better than its unremodeled form. However, functional disparities between different molecular forms of cardiolipin have never been established. Here, we interrogate this simple but crucial prediction utilizing the best available model to do so, Saccharomyces cerevisiae. Specifically, we compare the ability of unremodeled and remodeled cardiolipin, which differ markedly in their acyl chain composition, to support mitochondrial activities known to require cardiolipin. Surprisingly, defined changes in the acyl chain composition of cardiolipin do not alter either mitochondrial morphology or oxidative phosphorylation. Importantly, preventing cardiolipin remodeling initiation in yeast lacking TAZ1, an ortholog of the causative gene in Barth syndrome, ameliorates mitochondrial dysfunction. Thus, our data do not support the prevailing hypothesis that unremodeled cardiolipin is functionally distinct from remodeled cardiolipin, at least for the functions examined, suggesting alternative physiological roles for this conserved pathway.  相似文献   

14.
The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO) superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H+ and e- transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba3-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O2-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the CuB atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fea3 and CuB atoms that is best modeled as peroxide. The structure of ba3-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba3-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the door for systematic structure-function studies.  相似文献   

15.
The nucleoside diphosphate kinase Nm23-H4/NDPK-D forms symmetrical hexameric complexes in the mitochondrial intermembrane space with phosphotransfer activity using mitochondrial ATP to regenerate nucleoside triphosphates. We demonstrate the complex formation between Nm23-H4 and mitochondrial GTPase OPA1 in rat liver, suggesting its involvement in local and direct GTP delivery. Similar to OPA1, Nm23-H4 is further known to strongly bind in vitro to anionic phospholipids, mainly cardiolipin, and in vivo to the inner mitochondrial membrane. We show here that such protein-lipid complexes inhibit nucleoside diphosphate kinase activity but are necessary for another function of Nm23-H4, selective intermembrane lipid transfer. Mitochondrial lipid distribution was analyzed by liquid chromatography-mass spectrometry using HeLa cells expressing either wild-type Nm23-H4 or a membrane binding-deficient mutant at a site predicted based on molecular modeling to be crucial for cardiolipin binding and transfer mechanism. We found that wild type, but not the mutant enzyme, selectively increased the content of cardiolipin in the outer mitochondrial membrane, but the distribution of other more abundant phospholipids (e.g. phosphatidylcholine) remained unchanged. HeLa cells expressing the wild-type enzyme showed increased accumulation of Bax in mitochondria and were sensitized to rotenone-induced apoptosis as revealed by stimulated release of cytochrome c into the cytosol, elevated caspase 3/7 activity, and increased annexin V binding. Based on these data and molecular modeling, we propose that Nm23-H4 acts as a lipid-dependent mitochondrial switch with dual function in phosphotransfer serving local GTP supply and cardiolipin transfer for apoptotic signaling and putative other functions.  相似文献   

16.
In mammalian mitochondria, cardiolipin molecules are the primary targets of oxidation by reactive oxygen species. The interaction of oxidized cardiolipin molecules with the constituents of the apoptotic cascade may lead to cell death. In the present study, we compared the effects of quinol-containing synthetic and natural amphiphilic antioxidants on cardiolipin peroxidation in a model system (liposomes of bovine cardiolipin). We found that both natural ubiquinol and synthetic antioxidants, even being introduced in micro- and submicromolar concentrations, fully protected the liposomal cardiolipin from peroxidation. The duration of their action, however, varied; it increased with the presence of either methoxy groups of ubiquinol or additional reduced redox groups (in the cases of rhodamine and berberine derivates). The concentration of ubiquinol in the mitochondrial membrane substantially exceeds the concentrations of antioxidants we used and would seem to fully prevent peroxidation of membrane cardiolipin. In fact, this does not happen: cardiolipin in mitochondria is oxidized, and this process can be blocked by amphiphilic cationic antioxidants (Y. N. Antonenko et al. (2008) Biochemistry (Moscow), 73, 1273–1287). We suppose that a fraction of mitochondrial cardiolipin could not be protected by natural ubiquinol; in vivo, peroxidation most likely threatens those cardiolipin molecules that, being bound within complexes of membrane proteins, are inaccessible to the bulky hydrophobic ubiquinol molecules diffusing in the lipid bilayer of the inner mitochondrial membrane. The ability to protect these occluded cardiolipin molecules from peroxidation may explain the beneficial therapeutic action of cationic antioxidants, which accumulate electrophoretically within mitochondria under the action of membrane potential.  相似文献   

17.
Possible proton transport pathways in Clostridium pasteurianum (CpI) [FeFe]-hydrogenase were investigated with molecular dynamics simulations. This study was undertaken to evaluate the functional pathway and provide insight into the hydrogen bonding features defining an active proton transport pathway. Three pathways were evaluated, two of which consist of water wires and one of predominantly amino acid residues. Our simulations suggest that protons are not transported through water wires. Instead, the five-residue motif (Glu282, Ser319, Glu279, H2O, Cys299) was found to be the likely pathway, consistent with previously made experimental observations. The pathway was found to have a persistent hydrogen bonded core (residues Cys299 to Ser319), with less persistent hydrogen bonds at the ends of the pathway for both H2 release and H2 uptake. Single site mutations of the four residues have been shown experimentally to deactivate the enzyme. The theoretical evaluation of these mutations demonstrates redistribution of the hydrogen bonds in the pathway, resulting in enzyme deactivation. Finally, coupling between the protein dynamics near the proton transport pathway and the redox partner binding regions was also found as a function of H2 uptake and H2 release states, which may be indicative of a correlation between proton and electron movement within the enzyme.  相似文献   

18.
The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC); 2) 1-palmitoyl 2-oleoyl-phosphatidylethanolamine (POPE); and 3) a mixture of 75% POPE, 20% 1-palmitoyl 2-oleoyl-phosphatidylglycerol (POPG); and 5% 1-palmitoyl 2-oleoyl-diphosphatidylglycerol/cardiolipin (CL) to mimic the lipid composition of the bacterial inner membrane, were performed using the MARTINI coarse-grained force field to self-assemble lipids around the crystal structure of this membrane transport protein, followed by atomistic simulations. The overall fold of the protein in lipid bilayers remained similar to the crystal structure in detergent on the timescale of our simulations. Simulations were performed in the absence of uracil, and resulted in a closed state of the transporter, due to relative movement of the gate and core domains. Anionic lipids, including POPG and especially CL, were found to associate with UraA, involving interactions between specific basic residues in loop regions and phosphate oxygens of the CL head group. In particular, three CL binding sites were identified on UraA: two in the inner leaflet and a single site in the outer leaflet. Mutation of basic residues in the binding sites resulted in the loss of CL binding in the simulations. CL may play a role as a “proton trap” that channels protons to and from this transporter within CL-enriched areas of the inner bacterial membrane.  相似文献   

19.
With the emergence of multi-drug resistance of the currently available antimalarial drugs including the “magic bullet” artemisinin derivatives in the market, there is an urgent need for discovery and development of new potent antimalarial molecules. The present work deals with quantitative structure–activity relationship (QSAR) modeling, pharmacophore mapping and docking studies of a series of 35 thymidine analogs as inhibitors of Plasmodium falciparum thymidylate kinase (PfTMPK), an enzyme that catalyzes phosphorylation of thymidine monophosphate (TMP) to thymidine diphosphate (TDP). The models were validated both internally and externally and significant statistical results were obtained, indicating the robustness and reliability of the developed models. The docking study was performed using the LigandFit option of receptor–ligand interactions protocol section available in Discovery Studio 2.1 where lower RMSD values (0.6931 Å) between the co-crystallized ligand and re-docked ligand assured that the ligand was bound in the same binding pocket. The QSAR, pharmacophore mapping and docking studies provide an understanding of important structural requirements or essential molecular properties, or features of molecules, and important binding interactions, and provide an important guidance for the chemist to synthesis of new molecules with improved PfTMPK inhibitory activity profile. This work revealed the importance of –NH-fragment, electrophilicity of the molecules and the number of oxygen atom towards the PfTMPK inhibitory activity of the molecules. To the best of our knowledge, this work presents the first QSAR and pharmacophore report for thymidine analogs which may serve as an efficient tool for the design and synthesis of potent molecules as PfTMPK inhibitors to address the increasing threat of multi-drug resistance against P. falciparum.  相似文献   

20.
Cardiolipin in eukaryotes is found in the mitochondrial inner membrane, where it interacts with membrane proteins and, although not essential, is necessary for the optimal activity of a number of proteins. One of them is the mitochondrial ADP/ATP carrier, which imports ADP into the mitochondrion and exports ATP. In the crystal structures, cardiolipin is bound to three equivalent sites of the ADP/ATP carrier, but its role is unresolved. Conservation of residues at these cardiolipin binding sites across other members of the mitochondrial carrier superfamily indicates cardiolipin binding is likely to be important for the function of all mitochondrial carriers. Multiscale simulations were performed in a cardiolipin-containing membrane to investigate the dynamics of cardiolipin around the yeast and bovine ADP/ATP carriers in a lipid bilayer and the properties of the cardiolipin-binding sites. In coarse-grain simulations, cardiolipin molecules bound to the carriers for longer periods of time than phosphatidylcholine and phosphatidylethanolamine lipids—with timescales in the tens of microseconds. Three long-lived cardiolipin binding sites overlapped with those in the crystal structures of the carriers. Other shorter-lived cardiolipin interaction sites were identified in both membrane leaflets. However, the timescales of the interactions were of the same order as phosphatidylcholine and phosphatidylethanolamine, suggesting that these sites are not specific for cardiolipin binding. The calculation of lipid binding times and the overlap of the cardiolipin binding sites between the structures and simulations demonstrate the potential of multiscale simulations to investigate the dynamics and behavior of lipids interacting with membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号