首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Linjie Yu  Jiali Jin  Xing Ye  Yi Liu  Yun Xu 《Aging cell》2017,16(5):1073-1082
The accumulation and deposition of beta‐amyloid (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of AD, while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC3 in the pathogenesis of AD. Nuclear HDAC3 is significantly increased in the hippocampus of 6‐ and 9‐month‐old APPswe/PS1dE9 (APP/PS1) mice compared with that in age‐matched wild‐type C57BL/6 (B6) mice. Lentivirus ‐mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and Aβ levels in the brains of APP/PS1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC3 inhibition in the hippocampus of 9‐month‐old APP/PS1 mice. Furthermore, HDAC3 overexpression in the hippocampus increases Aβ levels, activates microglia, and decreases dendritic spine density in 6‐month‐old APP/PS1 mice. In conclusion, our results indicate that HDAC3 negatively regulates spatial memory in APP/PS1 mice and HDAC3 inhibition might represent a potential therapy for the treatment of AD.  相似文献   

2.

Background

Atypical expression of cell cycle regulatory proteins has been implicated in Alzheimer's disease (AD), but the molecular mechanisms by which they induce neurodegeneration are not well understood. We examined transgenic mice expressing human amyloid precursor protein (APP) and presenilin 1 (PS1) for changes in cell cycle regulatory proteins to determine whether there is a correlation between cell cycle activation and pathology development in AD.

Results

Our studies in the AD transgenic mice show significantly higher levels of cyclin E, cyclin D1, E2F1, and P-cdc2 in the cells in the vicinity of the plaques where maximum levels of Threonine 668 (Thr668)-phosphorylated APP accumulation was observed. This suggests that the cell cycle regulatory proteins might be influencing plaque pathology by affecting APP phosphorylation. Using neuroglioma cells overexpressing APP we demonstrate that phosphorylation of APP at Thr668 is mitosis-specific. Cells undergoing mitosis show altered cellular distribution and localization of P-APP at the centrosomes. Also, Thr668 phosphorylation in mitosis correlates with increased processing of APP to generate Aβ and the C-terminal fragment of APP, which is prevented by pharmacological inhibitors of the G1/S transition.

Conclusions

The data presented here suggests that cell cycle-dependent phosphorylation of APP may affect its normal cellular function. For example, association of P-APP with the centrosome may affect spindle assembly and cell cycle progression, further contributing to the development of pathology in AD. The experiments with G1/S inhibitors suggest that cell cycle inhibition may impede the development of Alzheimer's pathology by suppressing modification of βAPP, and thus may represent a novel approach to AD treatment. Finally, the cell cycle regulated phosphorylation and processing of APP into Aβ and the C-terminal fragment suggest that these proteins may have a normal function during mitosis.  相似文献   

3.
The aspartyl protease beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates processing of amyloid precursor protein (APP) into amyloid beta (Abeta) peptide, the major component of Alzheimer disease (AD) plaques. To determine the role that BACE1 plays in the development of Abeta-driven AD-like pathology, we have crossed PDAPP mice, a transgenic mouse model of AD overexpressing human mutated APP, onto mice with either a homozygous or heterozygous BACE1 gene knockout. Analysis of PDAPP/BACE(-/-) mice demonstrated that BACE1 is absolutely required for both Abeta generation and the development of age-associated plaque pathology. Furthermore, synaptic deficits, a neurodegenerative pathology characteristic of AD, were also reversed in the bigenic mice. To determine the extent of BACE1 reduction required to significantly inhibit pathology, PDAPP mice having a heterozygous BACE1 gene knock-out were evaluated for Abeta generation and for the development of pathology. Although the 50% reduction in BACE1 enzyme levels caused only a 12% decrease in Abeta levels in young mice, it nonetheless resulted in a dramatic reduction in Abeta plaques, neuritic burden, and synaptic deficits in older mice. Quantitative analyses indicate that brain Abeta levels in young APP transgenic mice are not the sole determinant for the changes in plaque pathology mediated by reduced BACE1. These observations demonstrate that partial reductions of BACE1 enzyme activity and concomitant Abeta levels lead to dramatic inhibition of Abeta-driven AD-like pathology, making BACE1 an excellent target for therapeutic intervention in AD.  相似文献   

4.
Increasing evidence has shown that specificity protein 1 (Sp1) is abnormally increased in the brains of subjects with Alzheimer’s disease (AD) and transgenic AD models. However, whether the Sp1 activation plays a critical role in the AD pathogenesis and selective inhibition of Sp1 activation may have a disease-modifying effect on the AD-like phenotypes remain elusive. In this study, we reported that Sp1 mRNA and protein expression were markedly increased in the brain of APPswe/PS1dE9 transgenic mice, whereas chronic administration of mithramycin A (MTM), a selective Sp1 inhibitor, potently inhibited Sp1 activation in the APPswe/PS1dE9 mice down to the levels of wild-type mice. Specifically, we found that MTM treatment resulted in a significant improvement of learning and memory deficits, a dramatic reduction in cerebral Aβ levels and plaque burden, a profound reduction in tau hyperphosphorylation, and a marked increase in synaptic marker in the APPswe/PS1dE9 mice. In addition, MTM treatment was powerfully effective in inhibiting amyloid precursor protein (APP) processing via suppressing APP, beta-site APP cleaving enzyme 1 (BACE1), and presenilin-1 (PS1) mRNA and protein expression to preclude Aβ production in the APPswe/PS1dE9 mice. Furthermore, MTM treatment strongly inhibited phosphorylated CDK5 and GSK3β signal pathways to reduce tau hyperphosphorylation in the APPswe/PS1dE9 mice. Collectively, our findings provide evidence that Sp1 activation may contribute to the AD pathogenesis and may serve as a novel therapeutic target in the treatment of AD. The present study highlights that selective Sp1 inhibitors may be considered as disease-modifying therapeutic agents for AD.  相似文献   

5.
There has been no extensive characterization of the effects of Ginsenoside Rg1, a pharmacological active component purified from the nature product ginseng, in an Alzheimer's disease mouse model. The well-characterized transgenic Alzheimer disease (AD) mice over expressing amyloid precursor protein (APP)/Aβ (Tg mAPP) and nontransgenic (nonTg) littermates at age of 6 and 9 months were treated with Rg 1 for three months via intraperitoneal injection. Mice were then evaluated for changes in amyloid pathology, neuropathology and behavior. Tg mAPP treated with Rg1 showed a significant reduction of cerebral Aβ levels, reversal of certain neuropathological changes, and preservation of spatial learning and memory, as compared to vehicle-treated mice. Rg1 treatment inhibited activity of γ-secretase in both Tg mAPP mice and B103-APP cells, indicating the involvement of Rg1 in APP regulation pathway. Furthermore, administration of Rg1 enhanced PKA/CREB pathway activation in mAPP mice and in cultured cortical neurons exposed to Aβ or glutamate-mediated synaptic stress. Most importantly, the beneficial effects on attenuation of cerebral Aβ accumulation, improvement in neuropathological and behavioral changes can be extended to the aged mAPP mice, even to 12-13 months old mice that had extensive amyloid pathology and severe neuropathological and cognitive malfunction. These studies indicate that Rg1 has profound multi-faced and neuroprotective effects in an AD mouse model. Rg1 induces neuroprotection through ameliorating amyloid pathology, modulating APP process, improving cognition, and activating PKA/CREB signaling. These findings provide a new perspective for the treatment of AD and demonstrate potential for a new class of drugs for AD treatment.  相似文献   

6.
Production of Aβ by γ‐secretase is a key event in Alzheimer's disease (AD). The γ‐secretase complex consists of presenilin (PS) 1 or 2, nicastrin (ncstn), Pen‐2, and Aph‐1 and cleaves type I transmembrane proteins, including the amyloid precursor protein (APP). Although ncstn is widely accepted as an essential component of the complex required for γ‐secretase activity, recent in vitro studies have suggested that ncstn is dispensable for APP processing and Aβ production. The focus of this study was to answer this controversy and evaluate the role of ncstn in Aβ generation and the development of the amyloid‐related phenotype in the mouse brain. To eliminate ncstn expression in the mouse brain, we used a ncstn conditional knockout mouse that we mated with an established AD transgenic mouse model (5XFAD) and a neuronal Cre‐expressing transgenic mouse (CamKIIα‐iCre), to generate AD mice (5XFAD/CamKIIα‐iCre/ncstnf/f mice) where ncstn was conditionally inactivated in the brain. 5XFAD/CamKIIα‐iCre/ncstnf/f mice at 10 week of age developed a neurodegenerative phenotype with a significant reduction in Aβ production and formation of Aβ aggregates and the absence of amyloid plaques. Inactivation of nctsn resulted in substantial accumulation of APP‐CTFs and altered PS1 expression. These results reveal a key role for ncstn in modulating Aβ production and amyloid plaque formation in vivo and suggest ncstn as a target in AD therapeutics.  相似文献   

7.
Neurotoxic β-amyloid (Aβ) peptides participate in Alzheimer’s disease (AD); therefore, reduction of Aβ generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Aβ may identify targets for reducing Aβ. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decreases in brain Aβ40 and Aβ42 by 67% and decreases in levels of the C-terminal β-secretase fragment (CTFβ) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Aβ. The difference in reduction of Aβ in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Aβ in AD.  相似文献   

8.
Brain insulin signaling deficits contribute to multiple pathological features of Alzheimer's disease (AD). Although intranasal insulin has shown efficacy in patients with AD, the underlying mechanisms remain largely unillustrated. Here, we demonstrate that intranasal insulin improves cognitive deficits, ameliorates defective brain insulin signaling, and strongly reduces β‐amyloid (Aβ) production and plaque formation after 6 weeks of treatment in 4.5‐month‐old APPswe/PS1dE9 (APP/PS1) mice. Furthermore, c‐Jun N‐terminal kinase activation, which plays a pivotal role in insulin resistance and AD pathologies, is significantly inhibited. The alleviation of amyloid pathology by intranasal insulin results mainly from enhanced nonamyloidogenic processing and compromised amyloidogenic processing of amyloid precursor protein (APP), and from a reduction in apolipoprotein E protein which is involved in Aβ metabolism. In addition, intranasal insulin effectively promotes hippocampal neurogenesis in APP/PS1 mice. This study, exploring the mechanisms underlying the beneficial effects of intranasal insulin on Aβ pathologies in vivo for the first time, highlights important preclinical evidence that intranasal insulin is potentially an effective therapeutic method for the prevention and treatment of AD.  相似文献   

9.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid-β (Aβ) peptide in the hippocampus and frontal cortex of the brain, leading to progressive cognitive decline. The endogenous bile acid tauroursodeoxycholic acid (TUDCA) is a strong neuroprotective agent in several experimental models of disease, including neuronal exposure to Aβ. Nevertheless, the therapeutic role of TUDCA in AD pathology has not yet been ascertained. Here we report that feeding APP/PS1 double-transgenic mice with diet containing 0.4 % TUDCA for 6 months reduced accumulation of Aβ deposits in the brain, markedly ameliorating memory deficits. This was accompanied by reduced glial activation and neuronal integrity loss in TUDCA-fed APP/PS1 mice compared to untreated APP/PS1 mice. Furthermore, TUDCA regulated lipid-metabolism mediators involved in Aβ production and accumulation in the brains of transgenic mice. Overall amyloidogenic APP processing was reduced with TUDCA treatment, in association with, but not limited to, modulation of γ-secretase activity. Consequently, a significant decrease in Aβ(1-40) and Aβ(1-42) levels was observed in both hippocampus and frontal cortex of TUDCA-treated APP/PS1 mice, suggesting that chronic feeding of TUDCA interferes with Aβ production, possibly through the regulation of lipid-metabolism mediators associated with APP processing. These results highlight TUDCA as a potential therapeutic strategy for the prevention and treatment of AD.  相似文献   

10.
Recent evidences show that peroxisome proliferator-activated receptor γ (PPARγ) is involved in the modulation of the amyloid-β (Aβ) cascade causing Alzheimer’s disease (AD) and treatment with PPARγ agonists protects against AD pathology. However, the function of PPARγ steady-state activity in Aβ cascade and AD pathology remains unclear. In this study, an antagonist of PPARγ, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPARγ activity in cerebellum. The results show that inhibition of PPARγ significantly induced Aβ levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of Aβ. Since cerebellum is spared from significant Aβ accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPARγ steady-state activity in protection of cerebellum against AD pathology.  相似文献   

11.
Alzheimer's disease (AD) is histopathologically characterized by neurodegeneration, the formation of intracellular neurofibrillary tangles and extracellular Aβ deposits that derive from proteolytic processing of the amyloid precursor protein (APP). As rodents do not normally develop Aβ pathology, various transgenic animal models of AD were designed to overexpress human APP with mutations favouring its amyloidogenic processing. However, these mouse models display tremendous differences in the spatial and temporal appearance of Aβ deposits, synaptic dysfunction, neurodegeneration and the manifestation of learning deficits which may be caused by age‐related and brain region‐specific differences in APP transgene levels. Consequentially, a comparative temporal and regional analysis of the pathological effects of Aβ in mouse brains is difficult complicating the validation of therapeutic AD treatment strategies in different mouse models. To date, no antibodies are available that properly discriminate endogenous rodent and transgenic human APP in brains of APP‐transgenic animals. Here, we developed and characterized rat monoclonal antibodies by immunohistochemistry and Western blot that detect human but not murine APP in brains of three APP‐transgenic mouse and one APP‐transgenic rat model. We observed remarkable differences in expression levels and brain region‐specific expression of human APP among the investigated transgenic mouse lines. This may explain the differences between APP‐transgenic models mentioned above. Furthermore, we provide compelling evidence that our new antibodies specifically detect endogenous human APP in immunocytochemistry, FACS and immunoprecipitation. Hence, we propose these antibodies as standard tool for monitoring expression of endogenous or transfected APP in human cells and APP expression in transgenic animals.  相似文献   

12.
Amyloid-beta peptide (Aβ)-directed active and passive immunization therapeutic strategies reduce brain levels of Aβ, decrease the severity of beta-amyloid plaque pathology and reverse cognitive deficits in mouse models of Alzheimer's disease (AD). As an alternative approach to passive immunization with full IgG molecules, single-chain variable fragment (scFv) antibodies can modulate or neutralize Aβ-related neurotoxicity and inhibit its aggregation in vitro. In this study, we characterized a scFv derived from a full IgG antibody raised against the C-terminus of Aβ, and studied its passage into the brains of APP transgenic mice, as well as its potential to reduce Aβ-related pathology. We found that the scFv entered the brain after intranasal application, and that it bound to beta-amyloid plaques in the cortex and hippocampus of APP transgenic mice. Moreover, the scFv inhibited Aβ fibril formation and Aβ-mediated neurotoxicity in vitro. In a preventative therapeutic approach chronic intranasal treatment with scFv reduced congophilic amyloid angiopathy (CAA) and beta-amyloid plaque numbers in the cortex of APPswe/PS1dE9 mice. This reduction of CAA and plaque pathology was associated with a redistribution of brain Aβ from the insoluble fraction to the soluble peptide pool. Due to their lack of the effector domain of full IgG, scFv may represent an alternative tool for the treatment of Aβ-related pathology without triggering Fc-mediated effector functions. Additionally, our observations support the possibility that Aβ-directed immunotherapy can reduce Aβ deposition in brain vessels in transgenic mice.  相似文献   

13.
Increased expression and altered processing of the amyloid precursor protein (APP) and generation of beta-amyloid peptides is important in the pathogenesis of amyloid plaques in Alzheimer's disease (AD). Transgenic Tg2576 mice overexpressing the Swedish mutation of human APP exhibit beta-amyloid deposition in the neocortex and limbic areas, accompanied by gliosis and dystrophic neurites. However, murine plaques appear to be less cross-linked and the mice show a lower degree of inflammation and neurodegeneration than AD patients. 'Advanced glycation endproducts (AGEs)', formed by reaction of proteins with reactive sugars or dicarbonyl compounds, are able to cross-link proteins and to activate glial cells, and are thus contributing to plaque stability and plaque-induced inflammation in AD. In this study, we analyze the tissue distribution of AGEs and the pro-inflammatory cytokines IL-1beta and TNF-alpha in 24-month-old Tg2576 mice, and compare the AGE distribution in these mice with a younger age group (13 months old) and a typical Alzheimer's disease patient. Around 70% of the amyloid plaque cores in the 24-month-old mice are devoid of AGEs, which might explain their solubility in physiological buffers. Plaque associated glia, which express IL-1beta and TNF-alpha, contain a significant amount of AGEs, suggesting that plaques, i.e. Abeta as its major component, can induce intracellular AGE formation and the expression of the cytokines on its own. In the 13-month-old transgenic mice, AGEs staining can neither be detected in plaques nor in glial cells. In contrast, AGEs are present in high amounts in both plaques and glia in the human AD patient. The data obtained in this show interesting differences between the transgenic mouse model and AD patients, which should be considered using the transgenic approach to test therapeutical strategies to eliminate plaques or to attenuate the inflammatory response in AD.  相似文献   

14.
The development of transgenic mice expressing mutated forms of the human amyloid precursor protein (APP) and presenilin-1 (PS1), proteins associated with familial forms of Alzheimer's disease (AD), has provided a backbone for translational studies of potential novel drug therapies. Such mice model some aspects of AD pathology in that they develop senile plaque-like deposits of the amyloid beta-protein (Aβ) together with inflammatory pathology and some degree of neurodegeneration. Aβ deposition is considered to be a potentially pathogenic feature of AD and drug discovery programmes utilising such mice and associated with drugs now reaching the clinic have been largely directed towards decreasing the deposition. This goal has been achieved in the mouse models, although the agents developed have not, to date, shown evidence of efficacy in AD sufferers and, in some cases, have worsened the clinical state. Nevertheless, reducing the pathological features of the disease continues to be the objective of pharmacological intervention and ongoing programmes continue to use transgenic mice expressing mutated APP and PS1 transgenes in attempts to overcome issues and difficulties arising from the initial clinical trials and to explore new approaches to AD treatment.  相似文献   

15.
16.

Background

Crocetin, an agent derived from saffron, has multiple pharmacological properties, such as neuroprotective, anti-oxidant, and anti-inflammatory actions. These properties might benefit the treatment of Alzheimer’s disease (AD). In the present study, we tested whether crocetin attenuates inflammation and amyloid-β (Aβ) accumulation in APPsw transgenic mice, AD mouse models. Cell viability and the levels of Aβ40 and Aβ42 in HeLa cells stably transfected with Swedish mutant APP751 were evaluated. Mice with Swedish mutant APP751 transgene were used as transgenic mouse models of AD, and were orally administrated with crocetin. Aβ protein and inflammatory cytokines were measured with ELISA. NF-κB and P53 were measured with western blot assay. Learning and memory were analyzed with Morris water maze and novel object recognition tests.

Results

Crocetin significantly reduced Aβ40 and Aβ42 secretion in Hela cells without effecting cell viability. In AD transgenic mice, crocetin significantly reduced the pro-inflammatory cytokines and enhanced anti-inflammatory cytokine in plasma, suppressed NF-κB activation and P53 expression in the hippocampus, decreased Aβ in various brain areas, and improved learning and memory deficits.

Conclusion

Crocetin improves Aβ accumulation-induced learning and memory deficit in AD transgenic mice, probably due to its anti-inflammatory and anti-apoptotic functions.
  相似文献   

17.
In vivo imaging and quantification of amyloid-β plaque (Aβ) burden in small-animal models of Alzheimer's disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [(11)C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [(11)C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [(11)C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice.  相似文献   

18.
Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD). Accumulated damaged mitochondria, which are associated with impaired mitophagy, contribute to neurodegeneration in AD. We show levels of Disrupted‐in‐schizophrenia‐1 (DISC1), which is genetically associated with psychiatric disorders and AD, decrease in the brains of AD patients and transgenic model mice and in Aβ‐treated cultured cells. Disrupted‐in‐schizophrenia‐1 contains a canonical LC3‐interacting region (LIR) motif (210FSFI213), through which DISC1 directly binds to LC3‐I/II. Overexpression of DISC1 enhances mitophagy through its binding to LC3, whereas knocking‐down of DISC1 blocks Aβ‐induced mitophagy. We further observe overexpression of DISC1, but not its mutant (muFSFI) which abolishes the interaction of DISC1 with LC3, rescues Aβ‐induced mitochondrial dysfunction, loss of spines, suppressed long‐term potentiation (LTP). Overexpression of DISC1 via adeno‐associated virus (serotype 8, AAV8) in the hippocampus of 8‐month‐old APP/PS1 transgenic mice for 4 months rescues cognitive deficits, synaptic loss, and Aβ plaque accumulation, in a way dependent on the interaction of DISC1 with LC3. These results indicate that DISC1 is a novel mitophagy receptor, which protects synaptic plasticity from Aβ accumulation‐induced toxicity through promoting mitophagy.  相似文献   

19.
Ola Philipson 《FEBS letters》2009,583(18):3021-1309
Intraneuronal punctate immunostaining in Alzheimer’s disease brain and amyloid-β precursor protein (APP) transgenic mice has been suggested to represent Aβ, but this is somewhat controversial. Here we show that both biochemical Aβ levels and intraneuronal immunostaining are reduced in APP transgenic mice when γ-secretase is inhibited. Moreover, BACE-1 deficient APP transgenic mice show neither Aβ production nor intraneuronal immunostaining. Our findings suggest that the punctate immunostaining with APP antibodies is due to Aβ that has accumulated inside neurons. Similar type of intraneuronal Aβ accumulation, which precedes senile plaque formation, may link Aβ to tauopathy and neurodegeneration in Alzheimer’s disease pathogenesis.  相似文献   

20.
Amyloid-β peptide (Aβ), which is generated by the β- and γ-secretase-mediated proteolysis of β-amyloid precursor protein (APP), plays an important role in the pathogenesis of Alzheimer's disease (AD). We recently reported that prostaglandin E(2) (PGE(2) ) stimulates the production of Aβ through both EP(2) and EP(4) receptors and that activation of the EP(4) receptor stimulates Aβ production through endocytosis and activation of γ-secretase. We here found that transgenic mice expressing mutant APP (APP23) mice showed a greater or lesser apparent cognitive deficit when they were crossed with mice lacking EP(2) or EP(4) receptors, respectively. Mice lacking the EP(4) receptor also displayed lower levels of Aβ plaque deposition and less neuronal and synaptic loss than control mice. Oral administration of a specific EP(4) receptor antagonist, AE3-208 to APP23 mice, improved their cognitive performance, as well as decreasing brain levels of Aβ and suppressing endocytosis and activation of γ-secretase. Taken together, these results suggest that inhibition of the EP(4) receptor improves the cognitive function of APP23 mice by suppressing Aβ production and reducing neuronal and synaptic loss. We therefore propose that EP(4) receptor antagonists, such as AE3-208, could be therapeutically beneficial for the prevention and treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号