首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Specific interaction between green fluorescent protein (GFP)-tagged human alpha- or gamma-enolase(97-242) (alpha or gammaENO(97-242)) and the rhodamine-labeled DNA fragment containing the c-myc P2 promoter was detected by a fluorescence resonance energy transfer (FRET)-based assay, designated as a "real-time FRET assay." The approach of donor (GFP) and acceptor (rhodamine) was caused by the association between ENO(97-242) and the c-myc P2 promoter, and the time-dependent increase in fluorescence intensity of the reaction mixture was observed at ex=400 nm and em=590 nm. The relative affinity (R(as)) of ENO(97-242) mutants to the wild type was investigated with a real-time FRET assay, and it was clarified that the amino acids that participated in the interaction existed comparatively broadly. Although it was difficult to measure the absolute value of the affinity for the binding protein by using this method, it was possible to investigate the relative affinity of mutants for the wild type. A real-time FRET assay using the GFP-tagged protein could be used as not only a qualitative, but also as a quantitative analysis, this being the best for investigating the key amino acids in binding proteins.  相似文献   

2.
Imaging of fluorescence resonance energy transfer (FRET) between fluorescently labeled molecules can measure the timing and location of intermolecular interactions inside living cells. Present microscopic methods measure FRET in arbitrary units, and cannot discriminate FRET efficiency and the fractions of donor and acceptor in complex. Here we describe a stoichiometric method that uses three microscopic fluorescence images to measure FRET efficiency, the relative concentrations of donor and acceptor, and the fractions of donor and acceptor in complex in living cells. FRET stoichiometry derives from the concept that specific donor-acceptor complexes will give rise to a characteristic FRET efficiency, which, if measured, can allow stoichiometric discrimination of interacting components. A first equation determines FRET efficiency and the fraction of acceptor molecules in complex with donor. A second equation determines the fraction of donor molecules in complex by estimating the donor fluorescence lost due to energy transfer. This eliminates the need for acceptor photobleaching to determine total donor concentrations and allows for repeated measurements from the same cell. A third equation obtains the ratio of total acceptor to total donor molecules. The theory and method were confirmed by microscopic measurements of fluorescence from cyan fluorescent protein (CFP), citrine, and linked CFP-Citrine fusion protein, in solutions and inside cells. Together, the methods derived from these equations allow sensitive, rapid, and repeatable detection of donor-, acceptor-, and donor-acceptor complex stoichiometry at each pixel in an image. By accurately imaging molecular interactions, FRET stoichiometry opens new areas for quantitative study of intracellular molecular networks.  相似文献   

3.
The DNA binding protein nuclear factor kappaB (NF-kappaB) and the cellular signaling pathways in which it participates are the central coordinators of many biological processes, including innate and adaptive immune responses, oxidative stress response, and aging. NF-kappaB also plays a key role in diseases, for example, cancer A simple, convenient, and high-throughput detection of NF-kappaB activation is therefore important for systematically studying signaling pathways and for screening therapeutic drug targets. We describe a method based on fluorescence resonance energy transfer (FRET) to directly measure the amount of activated NF-kappaB. More specifically, a double-stranded DNA (dsDNA) probe was designed to contain a pair of FRET fluorophores at the same end of the probe and an endonuclease binding site within the NF-kappaB consensus sequence. The activated NF-kappaB was detected by FRET following the restriction enzyme digestion. Using three different analyte materials--(i) purified recombinant NF- kappaB p50, (ii) nuclear extracts, and (iii) whole cell lysates--we demonstrated that this assay is as sensitive as the traditional, widely used electrophoretic mobility shift assay (EMSA), but much less labor-intensive for measuring NF-kappaB DNA binding activities. In addition, this FRET-based assay can be easily adapted for high-throughput screening of NF-kappaB activation.  相似文献   

4.
In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml.  相似文献   

5.
Understanding of the molecular mechanisms of protein-protein interactions (PPIs) at the cell surface of living cells is fundamental to comprehend the functional meaning of a large number of cellular processes. Here we discuss how new methodological strategies derived from non-invasive fluorescence-based approaches (i.e. fluorescence resonance energy transfer, FRET) have been successfully developed to characterize plasma membrane PPIs. Importantly, these technologies alone - or in concert with complementary methods (i.e. SNAP-tag/TR-FRET, TIRF/FRET) - can become extremely powerful approaches for visualizing cell surface PPIs, even between more than two proteins and also in native tissues. Interestingly, these methods would also be relevant in drug discovery in order to develop new high-throughput screening approaches or to identify new therapeutic targets. Accordingly, herein we provide a thorough assessment on all biotechnological aspects, including strengths and weaknesses, of these fluorescence-based methodologies when applied in the study of PPIs occurring at the cell surface of living cells.  相似文献   

6.
We report here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)–fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyze yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. Our results demonstrate for the first time that an efficient sequential BRET–FRET energy transfer process based on firefly luciferase bioluminescence can be employed to assay physiologically important protease activities.  相似文献   

7.
A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye and a quencher, respectively. When lysine-9 residues in the peptides were methylated, they were protected from cleavage by endoproteinase–EndoLysC, whereas unmethylated peptides were cleaved, resulting in an increase in fluorescent intensity.  相似文献   

8.
Nonstructural protein 5A (NS5A) is essential for hepatitis C virus (HCV) replication and assembly and is a critical drug target. Biochemical data suggest large parts of NS5A are unfolded as an isolated protein, but little is known about its folded state in the cell. We used fluorescence resonance energy transfer (FRET) to probe whether or not different regions of NS5A are in close proximity within the cell. Twenty-three separate reporter constructs were created by inserting one or more fluorophores into different positions throughout the three domains of NS5A. FRET efficiency was maximal when donor and acceptor fluorophores were positioned next to each other but also could be observed when the two fluorophores flanked NS5A domain 1 or domain 3. Informatic and biochemical analysis suggests that large portions of the carboxy terminus of NS5A are in an unfolded and disordered state. Quercetin, a natural product known to disrupt NS5A function in cells, specifically disrupted a conformationally specific domain 3 FRET signal. Intermolecular FRET indicated that the NS5A amino termini, but not other regions, are in close proximity in multimeric complexes. Overall, this assay provides a new window on the intracellular conformation(s) of NS5A and how the conformation changes in response to cellular and viral components of the replication and assembly complex as well as antiviral drugs.  相似文献   

9.
10.
DNA ligase is the enzyme that catalyzes the formation of the backbone phosphodiester bond between the 5'-PO(4) and 3'-OH of adjacent DNA nucleotides at single-stranded nicks. These nicks occur between Okazaki fragments during replication of the lagging strand of the DNA as well as during DNA repair and recombination. As essential enzymes for DNA replication, the NAD(+)-dependent DNA ligases of pathogenic bacteria are potential targets for the development of antibacterial drugs. For the purposes of drug discovery, a high-throughput assay for DNA ligase activity is invaluable. This article describes a straightforward, fluorescence resonance energy transfer-based DNA ligase assay that is well suited for high-throughput screening for DNA ligase inhibitors as well as for use in enzyme kinetics studies. Its use is demonstrated for measurement of the steady-state kinetic constants of Haemophilus influenzae NAD(+)-dependent DNA ligase and for measurement of the potency of an inhibitor of this enzyme.  相似文献   

11.
Zhang J  Mi C  Wu H  Huang H  Mao C  Xu S 《Analytical biochemistry》2012,421(2):673-679
High-quality NaYF4:Yb/Er/Gd up-conversion nanoparticles (UCNPs) were first synthesized by a solvothermal method using rare earth stearate, sodium fluoride, ethanol, water, and oleic acid as precursors. Doped Gd3+ ions can promote the transition of NaYF4 from cubic to hexagonal phase, shorten the reaction time, and reduce the reaction temperature without reducing the luminescence intensity of NaYF4:Yb/Er UCNPs. X-ray diffraction, infrared spectroscopy, transmission electron microscopy, and luminescence spectroscopy were applied to characterize the UCNPs. The nanoparticles exhibited small size and excellent green up-conversion photoluminescence, making them suitable for biological applications. After the surfaces of NaYF4:Yb/Er/Gd UCNPs were modified with amino groups through the Stöber method, they could be brought close enough to the analytically important protein called R-phycoerythrin (R-PE) bearing multiple carboxyl groups so that energy transfer could occur. A luminescence resonance energy transfer (LRET) system was developed using NaYF4:Yb/Er/Gd UCNPs as an energy donor and R-PE as an energy acceptor. As a result, a detection limit of R-PE of 0.5 μg/ml was achieved by the LRET system with a relative standard deviation of 2.0%. Although this approach was first used successfully to detect R-PE, it can also be extended to the detection of other biological molecules.  相似文献   

12.
A homogeneous, fluorescence resonance energy transfer (FRET)-based DNA polymerase assay that is suitable for high-throughput screening for inhibitors, and can also be used for steady-state kinetic investigations, is described. The activity, kinetic mechanism, and processivity of the isolated alpha subunit of DNA polymerase III, the product of the dnaE gene, from the gram-negative pathogen Haemophilus influenzae were investigated using the FRET assay.  相似文献   

13.
Sensitive detection of protein interactions is a critical step toward understanding complex cellular processes. As an alternative to fluorescence-based detection, Renilla reniformis luciferase conjugated to quantum dots results in self-illuminating bioluminescence resonance energy transfer quantum dot (BRET-Qdot) nanoprobes that emit red to near-infrared bioluminescence light. Here, we report the development of an ultrasensitive technology based on BRET-Qdot conjugates modified with streptavidin ([BRET-Qdot]-SA) to detect cell-surface protein interactions. Transfected COS7 cells expressing human cell-surface proteins were interrogated with a human Fc tagged protein of interest. Specific protein interactions were detected using a biotinylated anti-human Fc region specific antibody followed by incubation with [BRET-Qdot]-SA. The luciferase substrate coelenterazine activated bioluminescence light emission was detected with an ultra-fast and -sensitive imager. Protein interactions barely detectable by the fluorescence-based approach were readily quantified using this technology. The results demonstrate the successful application and the flexibility of the BRET-Qdot-based imaging technology to the ultrasensitive investigation of cell-surface proteins and protein-protein interactions.  相似文献   

14.
Probing the interactions of the DNA mismatch repair protein MutS with altered and damaged DNA is of great interest both for the understanding of the mismatch repair system function and for the development of tools to detect mutations. Here we describe a homogeneous time-resolved fluorescence (HTRF) assay to study the interactions of Escherichia coli MutS protein with various DNA substrates. First, we designed an indirect HTRF assay on a microtiter plate format and demonstrated its general applicability through the analysis of the interactions between MutS and mismatched DNA or DNA containing the most common lesion of the anticancer drug cisplatin. Then we directly labeled MutS with the long-lived fluorescent donor molecule europium tris-bipyridine cryptate ([TBP(Eu3+)]) and demonstrated by electrophoretic mobility shift assay that this chemically labeled protein retained DNA mismatch binding property. Consequently, we used [TBP(Eu3+)]-MutS to develop a faster and simpler semidirect HTRF assay.  相似文献   

15.
Neural precursor cell expressed, developmentally down-regulated gene 8 (NEDD8) is a recently discovered ubiquitin-like posttranslational modifier. NEDD8 acts predominantly as a regulator of ubiquitin-protein ligases and as a decoy for proteins targeted for proteasomal degradation. It thereby controls key events in cell cycle progression and embryogenesis. Deneddylase-1 (DEN1/NEDP1/SENP8) features a selective peptidase activity converting the proNEDD8 precursor to its mature form and an isopeptidase activity deconjugating NEDD8 from substrates such as cullins and p53. In this study, we describe a high-throughput screening (HTS)-compatible time-resolved fluorescent resonance energy transfer (TR-FRET) assay measuring the peptidase activity of DEN1.  相似文献   

16.
Dioxins comprise a group of compounds which contain a double aromatic ring-like structure. They are among the most prevalent and toxic environmental pollutants. Accumulation of dioxins in human tissues poses a potential threat to human health. Currently, analytical chemical procedures dominate dioxin-detection protocols. In this study, we established a fluorescence resonance energy transfer (FRET)-based dioxin-detection bioassay. Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) fused-cyan fluorescent protein (CFP) and -yellow fluorescent protein (YFP) constructed were transiently co-transfected into rat hepatoma cell line, H4IIEC3 cells. Our results showed that no FRET signals were detected in AHR-CFP- and ARNT-YFP-transfected H4IIEC3 cells. However, dioxin treatments upregulated FRET signals in these transfected cells in a dose-dependent manner. This work highlighted the potential of FRET technique in the detection of dioxin-like compounds.  相似文献   

17.
Quantitation of poly(A)-RNA, time-dependent visualization of intracellular poly(A)(+)-RNA localization in living mammalian cells, and time-resolved intracellular binding dynamics of molecular beacons at the single-molecule level using a fluorescence resonance energy transfer (FRET)-based molecular beacon are described. FRET-based molecular beacons were designed as poly(A)-targeting probes to be oligonucleotides that contained Cy5 and Cy3 fluorescent dyes at the strand ends and a poly(A)-targeting sequence inside the strand. Our ratiometric analysis using poly(A)-targeting probes allowed for highly specific and wide-ranging detection (from 1.25nM to 0.5μM) of poly(A)-RNA, as well as for determination of K(d) values, and revealed a distribution of the probe itself and localization of the target RNA sequence in cells. Furthermore, time-dependent FRET-mediated fluorescence changes at the single-molecule level caused by the folding-induced gradual conformation changes in live cells were observed.  相似文献   

18.
An adaptor protein, CrkII, which is involved in a variety of signaling cascades such as cell growth, migration, and apoptosis, becomes phosphorylated on Tyr(221) upon stimulation. Here, we report on a fluorescent resonance energy transfer-based sensor, which consists of CrkII sandwiched with cyan- and yellow-emitting variants of green fluorescent protein. This protein enabled us to monitor rapid and transient phosphorylation of CrkII upon epidermal growth factor stimulation in a living cell. However, rapid diffusion of the probes prevented us from specifying where the phosphorylation started within the cell. To overcome this problem, we fused the CAAX box of Ki-Ras to the carboxyl terminus of this probe and restricted its localization mostly to the plasma membrane. With this modified probe, we found that epidermal growth factor-induced phosphorylation of CrkII was initiated at the peripheral plasma membrane, moving toward the center of the cell. Moreover, this CAAX box-fused probe showed improvement in sensitivity and time resolution of the monitoring of CrkII phosphorylation. Thus, this pair of CrkII probes visualizes dynamic changes in the total and local levels of the tyrosine phosphorylation of CrkII in a living cell.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号