首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The major adverse consequences of radiation exposures are attributed to DNA damage in irradiated cells that has not been correctly restored by metabolic repair processes. However, the dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells either directly or via media transfer (radiation-induced genomic instability) or in cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by a number of delayed responses including chromosomal abnormalities, gene mutations and cell death. Bystander effects include increases or decreases in damage-inducible and stress-related proteins, increases or decreases in reactive oxygen and nitrogen species, cell death or cell proliferation, cell differentiation, radioadaptation, induction of mutations and chromosome aberrations and chromosomal instability. The phenotypic expression of untargeted effects and the potential consequences of these effects in tissues reflect a balance between the type of bystander signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. Thus, in addition to targeted effects of damage induced directly in cells by irradiation, a variety of untargeted effects may also make important short-term and long-term contributions to determining overall outcome after radiation exposures.  相似文献   

2.
There is increasing evidence biological responses to ionizing radiation are not confined to those cells that are directly hit, but may be seen in the progeny at subsequent generations (genomic instability) and in non-irradiated neighbors of irradiated cells (bystander effects). These so called non-targeted phenomena would have significant contributions to radiation-induced carcinogenesis, especially at low doses where only a limited number of cells in a population are directed hit. Here we present data using a co-culturing protocol examining chromosomal instability in alpha-irradiated and bystander human fibroblasts BJ1-htert. At the first cell division following exposure to 0.1 and 1Gy alpha-particles, irradiated populations demonstrated a dose dependent increase in chromosome-type aberrations. At this time bystander BJ1-htert populations demonstrated elevated chromatid-type aberrations when compared to controls. Irradiated and bystander populations were also analyzed for chromosomal aberrations as a function of time post-irradiation. When considered over 25 doublings, all irradiated and bystander populations had significantly higher frequencies of chromatid aberrations when compared to controls (2-3-fold over controls) and were not dependent on dose. The results presented here support the link between the radiation-induced phenomena of genomic instability and the bystander effect.  相似文献   

3.
Morgan WF 《Radiation research》2003,159(5):567-580
A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.  相似文献   

4.
Non-targeted bystander effects induced by ionizing radiation   总被引:1,自引:0,他引:1  
Morgan WF  Sowa MB 《Mutation research》2007,616(1-2):159-164
Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said "well what are the critical questions that should be addressed, and so what?", we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure.  相似文献   

5.
Morgan WF 《Radiation research》2003,159(5):581-596
The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.  相似文献   

6.
Exposure to ionizing radiation can result in delayed effects that can be detected in the progeny of an irradiated cell multiple generations after the initial exposure. These effects are described under the rubric of radiation-induced genomic instability and encompass multiple genotoxic endpoints. We have developed a green fluorescence protein (GFP)-based assay and demonstrated that ionizing radiation induces genomic instability in human RKO-derived cells and in human hamster hybrid GM10115 cells, manifested as increased homologous recombination (HR). Up to 10% of cells cultured after irradiation produce mixed GFP(+/-) colonies indicative of delayed HR or, in the case of RKO-derived cells, mutation and deletion. Consistent with prior studies, delayed chromosomal instability correlated with delayed reproductive cell death. In contrast, cells displaying delayed HR showed no evidence of delayed reproductive cell death, and there was no correlation between delayed chromosomal instability and delayed HR, indicating that these forms of genome instability arise by distinct mechanisms. Because delayed hyperrecombination can be induced at doses of ionizing radiation that are not associated with significantly reduced cell viability, these data may have important implications for assessment of radiation risk and understanding the mechanisms of radiation carcinogenesis.  相似文献   

7.
WF Morgan 《Radiation research》2012,178(2):AV223-AV236
A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.  相似文献   

8.
Exposure to ionizing radiation may induce a heritable genomic instability phenotype that results in a persisting and enhanced genetic and functional change among the progeny of irradiated cells. Since radiation-induced bystander effects have been demonstrated with a variety of biological end points under both in vitro and in vivo conditions, this raises the question whether cytoplasmic irradiation or the radiation-induced bystander effect can also lead to delayed genomic instability. In the present study, we used the Radiological Research Accelerator Facility charged-particle microbeam for precise nuclear or cytoplasmic irradiation. The progeny of irradiated and the bystander human hamster hybrid (A(L)) cells were analyzed using multicolor banding (mBAND) to examine persistent chromosomal changes. Our results showed that the numbers of metaphase cells involving changes of human chromosome 11 (including rearrangement, deletion and duplication) were significantly higher than that of the control in the progeny of both nuclear and cytoplasmic targeted cells. These chromosomal changes could also be detected among the progeny of bystander cells. mBAND analyses of clonal isolates from nuclear and cytoplasm irradiations as well as the bystander cell group showed that chromosomal unstable clones were generated. Analyses of clonal stability after long-term culture indicated no significant change in the number of unstable clones for the duration of culture in each irradiated group. These results suggest that genomic instability that is manifested after ionizing radiation exposure is not dependent on direct damage to the cell nucleus.  相似文献   

9.
A long-held dogma in radiation biology has been that the biological effects of exposure to ionizing radiation occur as a result of damage in directly irradiated cells and that no effect would occur in neighboring unirradiated cells. This paradigm has been frequently challenged by reports of radiation effects in unirradiated or 'bystander' cells receiving signals from directly irradiated cells, an issue that may have substantial impact on radiation risk assessment and development of radiation-based therapies. Radiation-induced bystander effects have been shown in single-cell systems in vitro for an array of cancer relevant endpoints, and may trigger damage in more complex 3-D tissue systems. They may be mediated by soluble factors released by irradiated cells into the extracellular environment and/or by the passage of mediator molecules through gap-junction intercellular communication. To date, evidence that radiation-associated bystander or abscopal responses are effectual in vivo has been limited, but new data suggest that they may significantly affect tumor development in susceptible mouse models. Further understanding of how the signal/s is transmitted to unirradiated cells and tissues and how it provokes long-range and significant responses is crucial. By summarizing the existing evidence of radiation induced bystander-like effects in various systems with emphasis on in vivo findings, we will discuss the potential mechanisms involved in these observations and how effects in bystander cells contribute to uncertainties in assessing cancer risks associated with radiation exposure.  相似文献   

10.
The traditional thinking has been that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. This implies that: 1) biological effects occur only in irratiated cells, 2) radiation traversal through the nucleus of the cell is a prerequisite to produce a biological response, and 3) DNA is the target molecule in the cell. Evidence has been emerging, however, for non-DNA targeted effects of radiation; that is, effects including mutations, chromosomal aberrations, and changes in gene expression which occur in cells that in themselves receive no radiation exposure. Two of these phenomena will be described in this paper. The first is radiation-induced genomic instability whereby biological effects, including elevated frequencies of mutations and chromosomal aberrations, arise in the distant descendants of irradiated cells. The second phenomenon has been termed the "bystander effect", whereby in a mixed population of irradiated and nonirradiated cells, biological effects arise in those cells that receive no radiation exposure. The damage signals are transmitted from cell to cell through gap junction channels, and the genetic effects observed in bystander cells appear to result from an upregulation of oxidative stress. The possible influence of these non-targeted effects of radiation of the respounse to low-dose exposures is discussed.  相似文献   

11.
Sokolov MV  Neumann RD 《PloS one》2010,5(12):e14195

Background

The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.

Methodology/Principal Findings

Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05).

Conclusions/Significance

These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.  相似文献   

12.
Communication between irradiated and unirradiated (bystander) cells can result in responses in unirradiated cells that are similar to responses in their irradiated counterparts. The purpose of the current experiment was to test the hypothesis that bystander responses will be similarly induced in primary murine stem cells under different cell culture conditions. The experimental systems used here, co-culture and media transfer, are similar in that they both restrict communication between irradiated and bystander cells to media borne factors, but are distinct in that with the media transfer technique, cells can only communicate after irradiation, and with co-culture, cells can communication before, during and after irradiation. In this set of parallel experiments, cell type, biological endpoint, and radiation quality and dose, were kept constant. In both experimental systems, clonogenic survival was significantly decreased in all groups, whether irradiated or bystander, suggesting a substantial contribution of bystander effects (BE) to cell killing. Genomic instability (GI) was induced under all radiation and bystander conditions in both experiments, including a situation where unirradiated cells were incubated with media that had been conditioned for 24h with irradiated cells. The appearance of delayed aberrations (genomic instability) 10-13 population doublings after irradiation was similar to the level of initial chromosomal damage, suggesting that the bystander factor is able to induce chromosomal alterations soon after irradiation. Whether these early alterations are related to those observed at later timepoints remains unknown. These results suggest that genomic instability may be significantly induced in a bystander cell population whether or not cells communicate during irradiation.  相似文献   

13.
Communication between irradiated and un-irradiated (bystander) cells can cause damage in cells that are not directly targeted by ionizing radiation, a process known as the bystander effect. Bystander effects can also lead to chromosomal/genomic instability within the progeny of bystander cells, similar to the progeny of directly irradiated cells. The factors that mediate this cellular communication can be transferred between cells via gap junctions or released into the extracellular media following irradiation, but their nature has not been fully characterized. In this study we tested the hypothesis that the bystander effect mediator contains an RNA molecule that may be carried by exosomes. MCF7 cells were irradiated with 2 Gy of X rays and the extracellular media was harvested. RNase treatment abrogated the ability of the media to induce early and late chromosomal damage in bystander cells. Furthermore, treatment of bystander cells with exosomes isolated from this media increased the levels of genomic damage. These results suggest that the bystander effect, and genomic instability, are at least in part mediated by exosomes and implicate a role for RNA.  相似文献   

14.
Ionizing radiation induces genomic instability, transmitted over many generations through the progeny of surviving cells. It is manifested as the expression of delayed effects such as delayed cell death, delayed chromosomal instability and delayed mutagenesis. Induced genomic instability exerts its delayed effects for prolonged periods of time, suggesting the presence of a mechanism by which the initial DNA damage in the surviving cells is memorized. Our recent studies have shown that transmitted memory causes delayed DNA breakage, which in turn activates DNA damage checkpoint, and is involved in delayed manifestation of genomic instability. Although the mechanism(s) involved in DNA damage memory remain to be determined, we suggest that ionizing radiation-induced mega-base deletion destabilizes chromatin structure, which can be transmitted many generations through the progeny, and is involved in initiation and perpetuation of genomic instability. The possible involvement of delayed activation of a DNA damage checkpoint in the delayed induction of genomic instability in bystander cells is also discussed.  相似文献   

15.
The radiation-induced bystander effect is a well-established phenomenon which results in damage in non-irradiated cells in response to signaling from irradiated cells. Since communication between irradiated and bystander cells could be reciprocal, we examined the mutual bystander response between irradiated cells and co-cultured with them non-irradiated recipients. Using a transwell culture system, irradiated human melanoma (Me45) cells were co-cultured with non-irradiated Me45 cells or normal human dermal fibroblasts (NHDF) and vice versa. The frequency of micronuclei and of apoptosis, ROS level, and mitochondrial membrane potential were used as the endpoints. Irradiated Me45 and NHDF cells induced conventional bystander effects detected as modest increases of the frequency of micronuclei and apoptosis in both recipient neighbors; the increase of apoptosis was especially high in NHDF cells co-cultured with irradiated Me45 cells. However, the frequencies of micronuclei and apoptosis in irradiated Me45 cells co-cultured with NHDF cells were significantly reduced in comparison with those cultured alone. This protective effect was not observed when irradiated melanomas were co-cultured with non-irradiated cells of the same line, or when irradiated NHDF fibroblasts were co-cultured with bystander melanomas. The increase of micronuclei and apoptosis in irradiated Me45 cells was paralleled by an increase in the level of intracellular reactive oxygen species (ROS), which was reduced significantly when they were co-cultured for 24h with NHDF cells. A small but significant elevation of ROS level in NHDF cells shortly after irradiation was also reduced by co-culture with non-irradiated NHDF cells. We propose that in response to signals from irradiated cells, non-irradiated NHDF cells trigger rescue signals, whose nature remains to be elucidated, which modify the redox status in irradiated cells. This inverse bystander effect may potentially have implications in clinical radiotherapy.  相似文献   

16.
Low doses of ionizing radiation induce the adaptive effect (AE) development in human cells which is followed by a number of cell responses. These responses can be transmitted from irradiated cells to non-irradiated ones (bystander effect, BE). The major role in radiation-induced BE is played by an oxidative stress (OS) and a DNA-signaling pathway, in which extracellular DNA fragments (ecDNA) are the factors of stress-signalization. We propose the following sequence of events in this signaling system: irradiation-OS-DNA modification-apoptosis of irradiated cells-ecDNA-signal acceptance by non-irradiated cells-OS-DNA modification, etc. We observed a radiation-induced BE which is accompanied by DNA-signaling pathway in differentiated and undifferentiated human cells forming monolayer or suspension cultures. Here we discuss several aspects of the radiation-induced BE mechanism and its persistence possibilities.  相似文献   

17.
Chen S  Zhao Y  Han W  Chiu SK  Zhu L  Wu L  Yu KN 《Mutation research》2011,706(1-2):59-64
Mammalian cells respond to ionization radiation by sending out extracellular signals to affect non-irradiated neighboring cells, which is referred to as radiation induced bystander effect. In the present paper, we described a phenomenon entitled the "rescue effects", where the bystander cells rescued the irradiated cells through intercellular signal feedback. The effect was observed in both human primary fibroblast (NHLF) and cancer cells (HeLa) using two-cell co-culture systems. After co-culturing irradiated cells with unirradiated bystander cells for 24h, the numbers of 53BP1 foci, corresponding to the number of DNA double-strand breaks in the irradiated cells were less than those in the irradiated cells that were not co-cultured with the bystander cells (0.78±0.04foci/cell vs. 0.90±0.04foci/cell) at a statistically significant level. Similarly, both micronucleus formation and extent of apoptosis in the irradiated cells were different at statistically significant levels if they were co-cultured with the bystander cells. Furthermore, it was found that unirradiated normal cells would also reduce the micronucleus formation in irradiated cancer cells. These results suggested that the rescue effects could participate in repairing the radiation-induced DNA damages through a media-mediated signaling feedback, thereby mitigating the cytotoxicity and genotoxicity of ionizing radiation.  相似文献   

18.
There is increasing evidence that two of the biological effects associated with low-dose ionizing radiation, genomic instability and bystander responses, may be linked. To verify and validate the link between the two phenomena, the ability of Si490 ions (high-energy particles associated with radiation risk in space) to induce bystander responses and chromosomal instability in human bronchial epithelial (HBEC-3kt) cells was investigated. These studies were conducted at both the population and single cell level in irradiated and nonirradiated bystander cells receiving medium from the irradiated cultures. At the general population level, transfer of medium from silicon-ion (Si490)-irradiated cultures (at doses of 0.073?Gy, 1.2?Gy and 2?Gy) to nonirradiated bystander cells resulted in small increases in the levels of chromosomal aberrations at the first division. Subsequently, single cell clones isolated from irradiated and bystander populations were analyzed for the appearance of de novo chromosome-type aberrations after ~50 population doublings using mFISH. Both irradiated and bystander clones demonstrated chromosomal instability (as seen by the de novo appearance of translocations and chromosomal fragments), albeit to different degrees, whereas sham-treated controls showed relatively stable chromosomal patterns. The results presented here highlight the importance of nontargeted effects of radiation on chromosomal instability in human epithelial cells and their potential relevance to human health.  相似文献   

19.
A sense of danger from radiation   总被引:7,自引:0,他引:7  
Tissue damage caused by exposure to pathogens, chemicals and physical agents such as ionizing radiation triggers production of generic "danger" signals that mobilize the innate and acquired immune system to deal with the intrusion and effect tissue repair with the goal of maintaining the integrity of the tissue and the body. Ionizing radiation appears to do the same, but less is known about the role of "danger" signals in tissue responses to this agent. This review deals with the nature of putative "danger" signals that may be generated by exposure to ionizing radiation and their significance. There are a number of potential consequences of "danger" signaling in response to radiation exposure. "Danger" signals could mediate the pathogenesis of, or recovery from, radiation damage. They could alter intrinsic cellular radiosensitivity or initiate radioadaptive responses to subsequent exposure. They may spread outside the locally damaged site and mediate bystander or "out-of-field" radiation effects. Finally, an important aspect of classical "danger" signals is that they link initial nonspecific immune responses in a pathological site to the development of specific adaptive immunity. Interestingly, in the case of radiation, there is little evidence that "danger" signals efficiently translate radiation-induced tumor cell death into the generation of tumor-specific immunity or normal tissue damage into autoimmunity. The suggestion is that radiation-induced "danger" signals may be inadequate in this respect or that radiation interferes with the generation of specific immunity. There are many issues that need to be resolved regarding "danger" signaling after exposure to ionizing radiation. Evidence of their importance is, in some areas, scant, but the issues are worthy of consideration, if for no other reason than that manipulation of these pathways has the potential to improve the therapeutic benefit of radiation therapy. This article focuses on how normal tissues and tumors sense and respond to danger from ionizing radiation, on the nature of the signals that are sent, and on the impact on the eventual consequences of exposure.  相似文献   

20.
Chaudhry MA 《Mutation research》2006,597(1-2):98-112
In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell communication processes in bystander cells receiving media from irradiated cells supports the active involvement of these processes in inducing bystander effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号