首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sodium-dependent high affinity choline uptake into synaptosomes from rat brain has been studied after in vivo treatments which would alter the activity of cholinergic neurons. We utilized a number of treatments to reduce the activity of cholinergc neurons in the brain. Administration of pentobarbital (65 mg/kg), chloral hydrate (40 mg/kg) and γbutyrelactone (750 mg/kg) caused a 50-80% reduction in sodium-dependent high affinity choline uptake in several brain regions (30 min). This depression was not found 24 h after injection. Interruption of the cholinergic septal-hippocampal or habenuleinterpeduncular tracts by lesions (10 min-1 h) also caused a similar, large reduction in sodium-dependent high affinity choline uptake in the hippocampus and the interpeduncular nucleus respectively. We reversed the inactivity after pentobarbital administration by direct electrical stimulation of the cholinergic septal-hippocampal tract. Stimulation (40 Hz) for 10-15 min completely reversed the depression in sodium-dependent high affinity choline uptake. Stimulation at lower frequencies or for shorter times caused a partial reversal. Administration of pentylenetetrazol (75 mg/kg), a convulsant, was utilized to increase the activity of central cholinergic neurons. After drug administration, we found a large (60%) increase in sodium-de-pendent high affinity choline uptake. This increase was not found in the hippocampus when cholinergic afferents were interrupted by septal lesion prior to drug administration. We also examined the uptake after administration of cholinergic drugs. Oxotremorine (0.75 mg/kg), a muscarinic agonist which reduces acetylcholine release and turnover, caused a reduction in uptake. On the other hand, administration of scopolamine (5 mg/kg), a cholinergic antagonist which increases acetylcholine turnover, caused an increase in sodium-dependent high affinity choline uptake. Addition of any drug utilized, drectly to uptake samples, did not alter uptake. We examined the conversion of [3H]choline to [3H]acetylcholine in hippocampal synaptosomes after septal lesion, pentylenetetrazol administration and in untreated controls. In all cases, 60-70% of the total sodium-dependent tritium content was present as [3H]acetylcholine. Evidence was presented that homoexchange is not or is less involved in choline uptake than in GABA uptake. A kinetic analysis of sodium-dependent high affinity choline uptake was performed after all treatments. We found changes in Vmax, after all treatments, which were consistently in the same direction as the alterations in activity. The proposal is made that the sodium-dependent high affinity choline uptake is coupled to cholinergic activity in such a way as to regulate the entry of choline for the maintenance of acetylcholine synthesis. The findings also lead us to propose that sodium-dependent high affinity choline uptake in vitro be utilized as a rapid, relative measure of the activity of cholinergic nerve terminals in vivo.  相似文献   

2.
The depolarization-induced, calcium-dependent release of [3H]ACh from hippocampal synaptosomes was studied in a superfusion system. Release increased, with increasing depolarization. Barium and strontium effectively substituted for calcium during the depolarization, but magnesium inhibited the release. Releasable [3H]ACh is derived from the sodium-dependent component of the [3H]choline uptake which points out the physiologic importance of sodium-dependent choline transport. It is concluded that [3H]ACh release in this system has the same properties as neurotransmitter release in many other systems. Previous studies have shown that treatments which alter the activity of cholinergic neurons in vivo result in parallel changes in sodium-dependent choline uptake in vitro. When synaptosomes were utilized from animals treated to reduce cholinergic activity, there was a reduced release following the reduced uptake. Conversely, when synaptosomes were taken from animals treated to increase sodium-dependent choline uptake, there was an increase in the release. It is concluded that the changes in sodium-dependent choline uptake in vitro consequent to changes in neuronal activity in vivo result in parallel changes in releasable ACh. A comparison was made between the effect of a number of ions and agents on release and their effect on the in vitro, depolarization-induced activation of sodium-dependent choline uptake. Barium and strontium, ions which substitute for calcium in the release process, support the in vitro activation of uptake. Vinblastine and Bay a 1040, compounds which block release, prevented the in vitro activation of sodium-dependent choline uptake. However, magnesium blocked release in a dose-dependent manner, but did not block the activation of uptake in vitro. Rather, magnesium substituted for calcium and supported the activation of uptake in a dose-dependent fashion. It is concluded that acetylcholine release is not necessary for the activation of choline uptake.  相似文献   

3.
Bromocriptine, at the optimal dose and time of 4 mg/kg, 90 min, increased the content of acetylcholine in the rat striatum by about 30% without affecting the acetylcholine content in other brain regions. Striatal choline acetyltransferase and acetylcholinesterase activities and sodium-dependent high affinity choline uptake were not affected by the in vivo administration or the in vitro incubation with even high amounts of the drug. The increase in striatal acetylcholine by bromocriptine was mediated through the dopaminergic system since pretreatment with pimozide or penfluridol, powerful dopamine receptor antagonists, completely prevented the effect while parachlorophenylaline and phenoxybenzene pretreatment were ineffective. The action of bromocriptine, differently from that of apomorphine, was also blocked upon inhibition of tyrosine hydroxylase by alphamethylparatyrosine, suggesting that intact catecholamine synthesis is necessary for the drug to act. The requirement of dopamine by bromocriptine was further indicated when no potentiation of the cholinergic response to bromocriptine occurred following induction of dopamine receptor supersensitivity by long-term 6-hydroxydopamine lesion of the nigroneostriatal pathway. On the other hand, evidence is presented to show that bromocriptine acts in synergism with dopamine as the latency period for the onset of bromocriptine's cholinergic action was significantly decreased when it was administered in combination with a subthreshold dose of L-dopa, the dopamine precursor. There also was no summation of bromocriptine's increase with apomorphine's increase in striatal acetylcholine content at supramaximal doses possibly indicating that the same population of intrastriatal cholinergic neurons is the common target of both drugs.It is proposed that bromocriptine exerts an inhibitory effect on the striatal cholinergic neurons through a stimulation of the dopaminergic system but, differently from apomorphine, it requires the presence of endogenous dopamine for its action.  相似文献   

4.
Exposure of rodents to lead in vivo has been associated with alterations in cholinergic and dopaminergic neurotransmission in the CNS. These effects have been hypothesized to result from competitive interactions between lead and calcium at sites involved in uptake and release of neurotransmitters and their precursors. These experiments reproduced the in vivo observation by in vitro exposure of crude synaptosomal suspensions to lead. Lead-induced inhibition of high affinity choline uptake was mimicked by reduced in vitro calcium concentrations, which suggests that lead's effects on cholinergic function are explainable by the lead-calcium hypothesis. However, inhibition of dopamine uptake was produced only by lead and not by reduced calcium; further additions of calcium did not reverse lead-induced effects on dopamine uptake. Increased calcium concentrations were shown to increase the release of dopamine; lead in the presence of normal calcium concentration did not affect dopamine release. However, more dopamine was released when increased calcium was combined with exposure to 1 × 10?4 lead. This effect may have resulted from lead's ability to increase the uptake of calcium by synaptosomes. Thus, the interactions between lead and calcium appear to differ in terms of effects on cholinergic and dopaminergic function; in the former, the results suggest a competitive interaction similar to that shown functionally at peripheral cholinergic sites; in the latter, a different role for calcium is hypothesized which may account for the different effects of lead.  相似文献   

5.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

6.
The multiple molecular forms of choline acetyltransferase (ChAT) were analysed during the postnatal development of rat brain. Changes in the sodium-dependent, high affinity uptake of [3H]choline (HAUC) and in the efficiency of conversion of labelled choline into ACh in vitro were also examined. Both mature and 7-day old brain contained three molecular forms of ChAT, with isoelectric points of pH 7.3, 7.9 and 8.3, but the immature brain appeared to contain smaller concentrations of the most basic form of the enzyme (pI = 8.3). Of the total choline uptake measured in slices of frontal cortex, adult samples exhibited a greater proportion of HAUC than 7-day samples and appeared to acetylate more efficiently the [3H]choline accumulated by high affinity uptake. This evidence suggests a basic molecular form of ChAT, appearing in rat brain during postnatal development, might be responsible for the efficient coupling of the high affinity uptake and subsequent acetylation of choline in cholinergic nerve terminals.  相似文献   

7.
Spinal cord-myotube cultures prepared with dissociated embryonic chick spinal cord cells and myoblasts exhibit a high affinity mechanism for accumulating choline. The uptake mechanism has a Km of 3.4 ± 0.5 μM (7) and a Vm of 40.0 ± 0.1 (7) pmoles/min/mg of protein (mean ± SEM; number of determinations in parentheses). It is inhibited 90–95% by 10 μM hemicholinium-3 or by replacement of Na+ in the incubation solution with Li+. Part of the choline (10–20%) accumulated by the high affinity system is converted to acetylcholine (ACh). Uptake studies on spinal cord cells and myotubes grown separately demonstrate that the spinal cord cells can account for virtually all of the choline uptake observed in the mixed cultures. Myotubes are unnecessary under these conditions for the expression of the high affinity uptake mechanism by spinal cord cells. Neurons are not the only cell type in culture to exhibit high affinity choline uptake. Chick fibroblasts in both rapidly growing and stationary phase can accumulate choline with kinetics similar to those observed for the high affinity uptake by spinal cord cells. Little if any of the choline accumulated by fibroblasts, however, is converted to ACh. In most uptake studies with spinal cord cells, contributions from fibroblasts were minimized by carrying out the analysis at a time when few non-neuronal cells were present in the spinal cord cultures. These observations suggest that a population of chick central nervous system (CNS) neurons develop a high affinity choline uptake mechanism in cell culture that has many of the properties described for uptake by cholinergic neurons in vivo and that at least part of the choline accumulated by the system can be used for neurotransmitter synthesis.  相似文献   

8.
Kinetic parameters for high affinity [HA] uptake in vitro in synaptosomes from different mouse brain regions were investigated. Vmax was highest in the striatum [200 pmol.· mg protein?1 · 4 min?1], followed by the cortex [111 pmol · mg protein?1 · 4 min?1], hippocampus [63 pmol · mg protein?1 · 4 min?1], midbrain [21 pmol · mg protein?1 · 4 min?1] and, lowest, medulla oblongata [5 pmol · mg protein?1 · 4 min?1]. Km was about the same in all brain regions [0.9–1.4 μM]. No sign of HA uptake was detected in synaptosomes from the cerebellum. A clear relationship between Vmax for synaptosomal HA uptake of Ch in vitro and apparent turnover of ACh in vivo was found between the brain regions. Administration of oxotremorine [1 mg·kg?1 i.p.] decreased Vmax for HA uptake of Ch by 60% in the cortex and hippocampus, by 50% in the striatum and by 20% in the midbrain. This effect is in accordance with the previously observed marked decrease in turnover of ACh in these brain regions following oxotremorine treatment.  相似文献   

9.
C Y Chiou 《Life sciences》1975,17(6):907-913
The pharmacology of a possible false cholinergic transmitter, (2-hydroxyethyl) methyldiethylammonium (diethylcholine, DEC) was studied with various preparations. It was found to inhibit the neuromuscular transmission of frog sciatic nerve-gastrocnemius muscle invitro with ED50 of 1.93 (0.66 - 5.79) × 10−4 M. DEC was also found to inhibit dog chorda tympani-Wharton's duct (postganglionic parasympathetic neuro-effector junction) and cat superior cervical ganglionnictitating membrane (sympathetic ganglion) preparations invivo with ED50's of 6.2 (1.8 – 21.1) mg/kg and 12.0 (5.7 - 25.2) mg/kg, respectively. After blockade of these preparations with DEC, the former was still responsive to intravenous injection of pilocarpine (1 mg/kg) and choline (10 mg/kg) and the latter to close arterial injection of acetylcholine (100 μg/injection) and choline (3 mg/min infusion). These results support the idea that DEC paralyzes cholinergic neurons possibly through false cholinergic transmission without blocking the cholinergic receptor at the post-junctional membrane.  相似文献   

10.
Embryonic chick spinal cord neurons grown in dissociated cell culture have a high affinity uptake mechanism for choline. We find that, in addition to acetylcholine synthesis, the accumulated choline is used for the synthesis of metabolites such as lipids that are retained in part by conventional fixation techniques. As a result autoradiographic methods can be used to identify the cells that have the uptake mechanism in spinal cord cultures. About 60% of the neurons are labeled by [3H]choline uptake in cultures prepared with spinal cord cells from 4-day-old embryos, and about 40% are labeled in cultures prepared with cord cells from 7-day-old embryos. Neurons that innervate skeletal myotubes in spinal cord-myotube cultures are consistently labeled by [3H]choline uptake. Neurons unlabeled by the procedure are viable: they exclude the dye trypan blue and accumulate 14C-amino acids for protein synthesis. Most of the neurons unlabeled by [3H]choline uptake can instead be labeled by uptake of γ-[3H]aminobutyric acid, and vice versa. These results suggest that high affinity choline uptake can be used to label cholinergic neurons in cell culture, and that at least some populations of noncholinergic neurons are not labeled by the procedure. It cannot yet be concluded, however, that all labeled neurons are cholinergic since more labeled neurons are obtained per cord than would be expected from the number of neurons making up identified cholinergic populations in vivo. A three- to fourfold increase in the amount of high affinity choline uptake is observed between Days 3 and 15 in culture for spinal cord cells obtained from 4-day-old embryos. The number of [3H]choline-labeled neurons in such cultures decreases slightly during the same period, suggesting that the increase in uptake reflects neuronal growth or development rather than an increase in population size. Both the magnitude of the uptake and the number of [3H]choline-labeled neurons are the same for spinal cord cells grown with and without skeletal myotubes.  相似文献   

11.
Abstract: The effect of choline (60 mg/kg, i.p.) on fluphenazine- and pentylenetetrazol-induced alterations in the concentration of acetylcholine (ACh) and/or the rate of sodium-dependent high-affinity choline uptake (HACU) in rat striatum and hippocampus was studied. Systemic administration of the dopamine receptor blocking agent fluphenazine hydrochloride (0.5 mg/kg, i.p.) decreased the concentration of ACh in the striatum; this effect was prevented by the prior administration of choline. The central nervous system stimulant pentylenetetrazol (30 mg/kg, i.p.) reduced the concentration of ACh in both striatum and hippocampus and increased the velocity of HACU in the hippocampus. Pretreatment with choline totally prevented the depletion of ACh induced by pentylenetetrazol in the striatum. In the hippocampus, prior administration of choline prevented the pentylenetetrazol-induced increase in the rate of HACU and attenuated the effect of pentylenetetrazol on the levels of ACh. Results indicate that the acute administration of choline antagonizes pharmacologically induced alterations in cholinergic activity as assessed by the rate of HACU and the steady-state concentration of ACh. Furthermore, data support the hypothesis that the administration of choline increases the ability of central cholinergic neurons to synthesize ACh under conditions of increased neuronal activity.  相似文献   

12.
Tor 23 is a monoclonal antibody, generated against cholinergic terminals of theTorpedo californica, that has been found to bind to the extracellular surface of cholinergic neurons in a variety of tissues. This study shows that Tor 23 inhibits: 1) high affinity [3H]hemicholinium-3 binding to detergent-solubilized membranes prepared from rat neocortices; 2) high affinity [3H]choline uptake in rat neocortical and striatal P2 preparations; and 3) [3H]acetylcholine synthesis in isolated nerve terminals. Tor 23 does not appear to affect low affinity [3H]choline uptake or [3H]acetylcholine release. These results are consistent with the hypothesis that Tor 23 may bind to nerve terminal high affinity choline transporters in the rat brain.  相似文献   

13.
Phosphate uptake by yeast at pH 7.2 is mediated by two mechanisms, one of which has a Km of 30 μM and is independent of sodium, and a sodium-dependent mechanism with a Km of 0.6 μM, both Km values with respect to monovalent phosphate. The sodium-dependent mechanism has two sites with affinity for Na+, with affinity constants of 0.04 and 29 mM. Also lithium enhances phosphate uptake; the affinity constants for lithium are 0.3 and 36 mM. Other alkali ions do not stimulate phosphate uptake at pH 7.2. Rubidium has no effect on the stimulation of phosphate uptake by sodium.Phosphate and arsenate enhance sodium uptake at pH 7.2. The Km of this stimulation with regard to monovalent orthophosphate is about equal to that of the sodium-dependent phosphate uptake.The properties of the cation binding sites of the phosphate uptake mechanism and those of the phosphate-dependent cation transport mechanism have been compared. The existence of a separate sodium-phosphate cotransport system is proposed.  相似文献   

14.
The effects of skeletal muscle extract on the development of CAT, ACh synthesis, high affinity choline uptake, and AChE activities were studied in dissociated ventral spinal cord cultures prepared from 14-day gestational rat embryos. In the absence of muscle extract, the development of CAT and AChE follow biphasic time courses in which they show initial declines followed by periods of steadily increasing activity. In contrast, ACh synthesis and high affinity choline uptake both gradually increase throughout the entire culture period. The presence of muscle extract both prevents the initial decline of CAT and AChE as well as stimulates the rates of development of all four cholinergic markers; however, the degrees and time courses of stimulation differ markedly. The effects of muscle extract on the kinetic and pharmacological properties of ACh synthesis and choline uptake in rat ventral cord cultures were also investigated. Cells treated with muscle extract for 2 days express both high affinity (Km = 1.6 microM) and low affinity (Km = 22 microM) choline uptake mechanisms. Control cells, on the other hand, express only low affinity uptake at this stage but develop a high affinity uptake mechanism by Day 7. During this time both ACh synthesis and high affinity choline uptake become increasingly sensitive to inhibition by hemicholinium-3. These results demonstrate that skeletal muscle factors enhance the development of cholinergic properties in embryonic spinal cord cultures. However, differences in sensitivity to muscle extract concentration, time courses of development, and degrees of stimulation suggest that these changes may involve distinct cellular mechanisms which are differentially affected by skeletal muscle factors.  相似文献   

15.
AimsHippocampal cholinergic hypofunction is known to be involved in the cognitive deficits of Alzheimer's disease, but the detailed mechanisms remain to be elucidated. In order to establish an in vitro hippocampal cholinergic neuronal model for the relevant mechanistic studies, we have characterized a widely used hippocampal neuronal cell line, HT22, a sub-line derived from parent HT4 cells that were originally immortalized from primary mouse hippocampal neuronal culture.Main methodsWestern blot and immunocytochemistry were used to examine expression of cholinergic markers in HT22 cells. High potassium-evoked [3H]ACh release was used to evaluate the cholinergic functional properties of the cells.Key findingsWe found that HT22 cells express essential cholinergic markers, such as the high affinity choline transporter, choline acetyltransferase, vesicular acetylcholine transporter, and muscarinic acetylcholine receptors. Exposure of HT22 cells to high potassium evoked [3H]ACh release in a dose-dependent manner. In addition, the [3H]ACh release was significantly potentiated when presynaptic autoreceptors were blocked.SignificanceOur results suggest that HT22 cells possess functional cholinergic properties, and can be used for an in vitro model for defining the mechanisms in cognitive deficits of Alzheimer's disease.  相似文献   

16.
Robert Schwarcz 《Life sciences》1981,28(10):1147-1154
Glutamate uptake appears to be stable when measured in rat striatal synaptosomes from tissue stored for up to four hours post-mortem at 25°C. Between four and eight hours storage at room temperature there is a sharp 70% decrease in uptake. Freezing of tissue on dry ice, storage at 4°C for up to 7 days and at ?80°C for 5 days results in 20–30% residual glutamate uptake. Quantitatively similar data can be obtained in eight extrastriatal brain areas. Kinetic analysis of glutamate uptake in stored and frozen tissue reveals the loss of the majority of both sodium-dependent high affinity and temperature-sensitive low affinity sites (vmax-values) while the respective Km-values are not significantly changed. Pharmacological properties of the high affinity uptake versus a number of specific and metabolic uptake inhibitors remain unaltered by the storage and freezing procedure. The tissue treatment chosen for the present study roughly corresponds with the preparation of human post-mortem brain tissue for enzyme-, receptor-binding- or neuro-transmitter assays. It therefore seems conceivable that meaningful uptake studies can be performed on human autopsy material, thus adding an important parameter to the battery of neurochemical markers already accessible for post-mortem invitro examination.  相似文献   

17.
Abstract: The characteristic pathological features of the postmortem brain of Alzheimer's disease (AD) patients include, among other features, the presence of neuritic plaques composed of amyloid β-peptide (Aβ) and the loss of basal forebrain cholinergic neurons, which innervate the hippocampus and the cortex. Studies of the pathological changes that characterize AD and several other lines of evidence indicate that Aβ accumulation in vivo may initiate and/or contribute to the process of neurodegeneration and thereby the development of AD. However, the mechanisms by which Aβ peptide influences/causes degeneration of the basal forebrain cholinergic neurons and/or the cognitive impairment characteristic of AD remain obscure. Using in vitro slice preparations, we have recently reported that Aβ-related peptides, under acute conditions, potently inhibit K+-evoked endogenous acetylcholine (ACh) release from hippocampus and cortex but not from striatum. In the present study, we have further characterized Aβ-mediated inhibition of ACh release and also measured the effects of these peptides on choline acetyltransferase (ChAT) activity and high-affinity choline uptake (HACU) in hippocampal, cortical, and striatal regions of the rat brain. Aβ1–40 (10?8M) potently inhibited veratridine-evoked endogenous ACh release from rat hippocampal slices and also decreased the K+-evoked release potentiated by the nitric oxide-generating agent, sodium nitroprusside (SNP). It is interesting that the endogenous cyclic GMP level induced by SNP was found to be unaltered in the presence of Aβ1–40. The activity of the enzyme ChAT was not altered by Aβ peptides in hippocampus, cortex, or striatum. HACU was reduced significantly by various Aβ peptides (10?14 to 10?6M) in hippocampal and cortical synaptosomes. However, the uptake of choline by striatal synaptosomes was altered only at high concentration of Aβ (10?6M). Taken together, these results indicate that Aβ peptides, under acute conditions, can decrease endogenous ACh release and the uptake of choline but exhibit no effect on ChAT activity. In addition, the evidence that Aβ peptides target primarily the hippocampus and cortex provides a potential mechanistic framework suggesting that the preferential vulnerability of basal forebrain cholinergic neurons and their projections in AD could relate, at least in part, to their sensitivity to Aβ peptides.  相似文献   

18.
Rats treated with reserpine show increased Vmax for the high affinity uptake of choline into small slices of corpus striatum. The choline acetyltransferase activity of whole homogenates of striatum is also increased. These changes are consistent with increased cholinergic neuronal activity in the striatum and seem likely to be adaptations mediating increased rates of synthesis of acetylcholine. The maximal increases found occurred concurrently, consistent with coupling of the high affinity uptake of choline and its acetylation in cholinergic nerve terminals of the rat. That increased high affinity uptake is accompanied by increased choline acetyltransferase activity, suggests the input of choline is not the sole determinant of rates of synthesis of acetylcholine, in spite of the large Vmas for striatal choline acetyltransferase, compared with that for high affinity uptake. These results seem best explained by kinetic coupling, in the rat, of the high affinity uptake of choline with a limited pool of choline acetyltransferase preferentially localised at the nerve terminal plasma membrane.  相似文献   

19.
阿尔茨海默病主要病理学特征是在脑中形成大量的老年斑和神经元纤维缠结以及出现弥漫性脑萎缩.胆碱能系统的失调与阿尔茨海默病的发生机制关系密切.具体表现为基底前脑的胆碱能系统紊乱,胆碱乙酰化酶、乙酰胆碱含量显著减少,以及大量胆碱能神经元退化.胆碱转运体是胆碱能系统中用于转运胆碱进入细胞的关键蛋白体,有三种类型:高亲和力胆碱转运体、胆碱转运体类蛋白及非特异性有机阳离子转运体.近年,很多研究表明胆碱转运体的异常与一系列神经退行性紊乱有关.本文简要综述胆碱能系统中胆碱转运体的生理作用及其在阿尔茨海默病中异常代谢和可能机制的研究进展,以期为防治阿尔茨海默病提供进一步的理论和实验依据.  相似文献   

20.
A gas chromatograph/quadrupole mass spectrometer system has been employed to estimate the turnover of acetylcholine in mouse brain in vivo following a pulse intravenous injection of choline, using discrete deuterium labelled variants of choline and acetylcholine as tracer and internal standards. There appear to be two functional pools with turnover rates of 1.4 and 7.9 nmol gm?1min?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号