首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inner ear stones (otoliths) of larval cichlid fish were labelled with the calcium-tracer alizarin-complexone (AC) before animals were subjected to hypergravity (hg; 3 g). After the experiment, the otoliths' area between the two AC-labellings was measured. Growth of hg-otoliths was significantly slowed down as compared to 1 g-control specimens. In the course of a second experiment, the vestibular nerve was unilaterally transacted in neonate swordtail fish which were subsequently incubated in AC. Incorporation of AC was considerably lower in the otoliths of the transacted side. The results strongly suggest that otolith growth is continuously regulated in dependence of the environmental gravity vector. Since the otolithic calcium incorporation ceased on the transected head sides, it is concluded that the regulation of otolith growth is based on the central nervous efferent vestibular system.  相似文献   

2.
Orientation with respect to gravity is essential for the survival of complex organisms. The gravity receptor is one of the phylogenetically oldest sensory systems, and special adaptations that enhance sensitivity to gravity are highly conserved. The fish inner ear contains three large extracellular biomineral particles, otoliths, which have evolved to transduce the force of gravity into neuronal signals. Mammalian ears contain thousands of small particles called otoconia that serve a similar function. Loss or displacement of these structures can be lethal for fish and is responsible for benign paroxysmal positional vertigo (BPPV) in humans. The distinct morphologies of otoconial particles and otoliths suggest divergent developmental mechanisms. Mutations in a novel gene Otopetrin 1 (Otop1), encoding multi-transmembrane domain protein, result in nonsyndromic otoconial agenesis and a severe balance disorder in mice. Here we show that the zebrafish, Danio rerio, contains a highly conserved gene, otop1, that is essential for otolith formation. Morpholino-mediated knockdown of zebrafish Otop1 leads to otolith agenesis without affecting the sensory epithelium or other structures within the inner ear. Despite lack of otoliths in early development, otolith formation partially recovers in some fish after 2 days. However, the otoliths are malformed, misplaced, lack an organic matrix, and often consist of inorganic calcite crystals. These studies demonstrate that Otop1 has an essential and conserved role in the timing of formation and the size and shape of the developing otolith.  相似文献   

3.
Juvenile swordtail fish and larval cichlids were subjected to parabolic aircraft flights (PAFs) and individually observed. After the PAFs, inner ear otoliths and sensory epithelia were examined on the light microscopical level. Otolith asymmetry (differences in otolith size between the left and the right side) was especially pronounced in those fish, who exhibited a kinetotic behaviour (e.g., spinning movements) during microgravity. This speaks in favour of a theoretical concept according to which susceptibility to space motion sickness in humans may be based on asymmetric inner ear stones. The cell density of sensory epithelia was lower in kinetotic animals as compared to normally swimming fish. Thus, asymmetric otoliths can cause kinetosis in fish during PAFs, but susceptibility to kinetosis may also be based on an aberrative inner ear morphology.  相似文献   

4.
Anken RH 《Protoplasma》2006,229(2-4):205-208
Summary. Stato- or otoliths are calcified structures in the organ of balance and equilibrium of vertebrates, the inner ear, where they enhance its sensitivity to gravity. The compact otoliths of fish are composed of the calcium carbonate polymorph aragonite and a small fraction of organic molecules. The latter form a protein skeleton which determines the morphology of an otolith as well as its crystal lattice structure. This short review addresses findings according to which the brain obviously plays a prominent role in regulating the mineralisation of fish otoliths and depends on the gravity vector. Overall, otolith mineralisation has thus been identified to be a unique, neuronally guided biomineralisation process. The following is a hypothetical model for regulation of calcification by efferent vestibular neurons: (1) release of calcium at tight junctions in the macular epithelia, (2) macular carbonic anhydrase activity (which in turn is responsible for carbonate deposition), (3) chemical composition of matrix proteins. The rationale and evidence that support this model are discussed. Correspondence and reprints: Zoological Institute, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Federal Republic of Germany.  相似文献   

5.
The amounts of calcium and strontium were measured by inductively coupled plasma mass spectrometry (ICP-MS) in saccular and utricular inner ear otoliths (sagittae and lapilli, respectively) of developing cichlid fish. These fish had been maintained for 22 days at 3-g hypergravity conditions within a centrifuge. During this time-span, the animals completed their ontogenetic development from hatch to the free-swimming stage. Neither the morphogenetic development nor the timely onset and gain of performance of the swimming behaviour was impaired by the experimental conditions. Experimental and control animals also did not differ concerning their size (total length). ICP-MS revealed that the otoliths contained significantly less calcium (in microg/otolith) after hyper-g exposure compared to parallelly raised 1-g control specimens (lapilli: 0.74+/-0.21 vs. 1.16+/-0.41; sagittae: 2.09+/-0.49 vs. 2.76+/-0.47). The content of strontium (in microg/otolith: lapilli: 0.0044+/-0.0023 vs. 0.0022+/-0.0013; sagittae: 0.0094+/-0.0026 vs. 0.0081+/-0.0016) and, consequently, the Sr/Ca ratio (Sr/Cax100) was increased (lapilli: 0.607+/-0.267 vs. 0.201+/-0.12; sagittae: 0.439+/-0.093 vs. 0.301+/-0.086). Since the calcium content can be taken as a proxy for otolith weight, and because parallelly undertaken morphometric investigations revealed smaller otoliths (maximum radius and surface area) due to hyper-g exposure, the results suggest that the growth of otoliths at hyper-g is slowed down. Since the concentration of trace elements incorporated into otoliths is likely based on the composition of the respective protein matrix, our findings suggest that the protein metabolism is affected by hypergravity.  相似文献   

6.

Introduction

While a number of studies have illustrated and analyzed 3D models of inner ears in higher vertebrates, inner ears in fishes have rarely been investigated in 3D, especially with regard to the sensory epithelia of the end organs, the maculae. It has been suggested that the 3D curvature of these maculae may also play an important role in hearing abilities in fishes. We therefore set out to develop a fast and reliable approach for detailed 3D visualization of whole inner ears as well as maculae.

Results

High-resolution microCT imaging of black mollies Poecilia sp. (Poeciliidae, Teleostei) and Steatocranus tinanti (Cichlidae, Teleostei) stained with phosphotungstic acid (PTA) resulted in good tissue contrast, enabling us to perform a reliable 3D reconstruction of all three sensory maculae of the inner ears. Comparison with maculae that have been 3D reconstructed based on histological serial sections and phalloidin-stained maculae showed high congruence in overall shape of the maculae studied here.

Conclusions

PTA staining and subsequent high-resolution contrast enhanced microCT imaging is a powerful method to obtain 3D models of fish inner ears and maculae in a fast and more reliable manner. Future studies investigating functional morphology, phylogenetic potential of inner ear features, or evolution of hearing and inner ear specialization in fishes may benefit from the use of 3D models of inner ears and maculae.
  相似文献   

7.
Otoliths were removed from field-collected silversides of age less than 3 months. Otolith diameter was highly correlated with total length of the fish. Daily growth ring counts for this species are known to be a function of age rather than size, so widths for the daily growth rings provide a record of daily increases in length of the fish. Measurement of ring widths showed that weekly specific growth rate was greater than 70% at age 1 week, but declined to about 30% at age 1 month and about 15% at age 2 months. A laboratory experiment in which temperature was changed on a weekly basis demonstrated that environmental variables can affect the width of rings. Nevertheless, the growth rate of field-collected fish, as calculated from otolith ring widths, was more highly correlated with size of fish, as measured by otolith radius, than with the environmental variables of temperature, salinity and plankton abundance. Back-calculation of growth rates from otolith ring widths of five fish collected at the end of the growing season yielded the same age-growth curves as were obtained from 203 fish collected biweekly during the season.  相似文献   

8.
9.
Vertebrate animals localize sounds by comparing differences in the acoustic signal between the two ears and, accordingly, ear structures such as the otoliths of fishes are expected to develop symmetrically. Sound recently emerged as a leading candidate cue for reef fish larvae navigating from open waters back to the reef. Clearly, the integrity of the auditory organ has a direct bearing on what and how fish larvae hear. Yet, the link between otolith symmetry and effective navigation has never been investigated in fishes. We tested whether otolith asymmetry influenced the ability of returning larvae to detect and successfully recruit to favourable reef habitats. Our results suggest that larvae with asymmetrical otoliths not only encountered greater difficulties in detecting suitable settlement habitats, but may also suffer significantly higher rates of mortality. Further, we found that otolith asymmetries arising early in the embryonic stage were not corrected by any compensational growth mechanism during the larval stage. Because these errors persist and phenotypic selection penalizes asymmetrical individuals, asymmetry is likely to play an important role in shaping wild fish populations.  相似文献   

10.
Lateralized behavior is widespread among vertebrate animals and is determined primarily by structural-functional brain asymmetry as well as by the presence of somatic and visceral asymmetry. Some kinds of asymmetric reactions are suggested to be due to the presence of asymmetry at the level of sense organs, in particular, of otolith organs. This review presents data on values and characters of otolith asymmetry (OA) in animals of various species and classes and on the effect of weightlessness and hypergravity on OA; the issue of the effect of OA on vestibular and auditory functions also is considered. In symmetric vertebrates, OA was shown to be fluctuating, and its coefficient χ ranges from ?0.2 to +0.2; in the overwhelming majority of individuals, |χ| < 0.06. The low OA level enables the paired otolith organs to work in coordination; this is why the OA level is equally low regardless of the individual taxonomic and ecological position, size, age, and otolith growth rate. Individuals with the abnormally high OA level can experience difficulties in analyzing auditory and vestibular stimuli; therefore, most of such individuals are eliminated by natural selection. Unlike symmetric vertebrates, labyrinths of many Pleuronectiformes have pronounced OA-otoliths in the lower labyrinth, on average, are significantly heavier than those in the upper labyrinth. The organs of flatfish represent the only example when OA, being directional, seem to play an essential role in lateralized behavior and are suggested to be used in the spatial localization of the source of sound. The short-term weightlessness and relatively weak hypergravity (≤ 2g) do not affect OA. However, it cannot be ruled out that the long-term weightlessness and hypergravity ≥ 3g as well as some diseases and age-related changes can enhance OA and cause some functional disturbances.  相似文献   

11.
Behavioral responses and eye movements of fish during linear acceleration were reviewed. It is known that displacement of otoliths in the inner ear leads to body movements and/or eye movements. On the ground, the utriculus of the vestibular system is stimulated by otolith displacement caused by gravitational and inertial forces during horizontal acceleration of whole body. When the acceleration is imposed on the fish's longitudinal axis, the fish showed nose-down and nose-up posture for tailward and noseward displacement of otolith respectively. These responses were understood that the fish aligned his longitudinal body axis in a plane perpendicular to the direction of resultant force vector acting on the otoliths. When the acceleration was sideward, the fish rolled around his longitudinal body axis so that his back was tilted against the direction in which the inertial force acted on the otoliths. Linear acceleration applied to fish's longitudinal body axis evoked torsional eye movement. Direction of torsion coincided with the direction of acceleration, which compensate the change of resultant force vector produced by linear acceleration and gravity. Torsional movement of left and right eye coordinated with each other. In normal fish, both sinusoidal and rectangular acceleration of 0.1G could evoke clear eye torsion. Though the amplitude of response increased with increasing magnitude of acceleration up to 0.5 G, the torsion angle did not fully compensate the angle calculated from gravity and linear acceleration. Removal of the otolith on one side reduced the response amplitude of both eyes. The torsion angle evoked by rectangular acceleration was smaller than that evoked by sinusoidal acceleration in both normal and unilaterally labyrinthectomized fish. These results suggest that eye torsion of fish include both static and dynamic components.  相似文献   

12.
This study investigated and compared asymmetry in sagittal otolith shape and length between left and right inner ears in four roundfish and four flatfish species of commercial interest. For each species, the effects of ontogenetic changes (individual age and total body length), sexual dimorphism (individual sex) and the otolith's location on the right or left side of the head, on the shape and length of paired otoliths (between 143 and 702 pairs according to species) were evaluated. Ontogenetic changes in otolith shape and length were observed for all species. Sexual dimorphism, either in otolith shape and length or in their ontogenetic changes, was detected for half of the species, be they round or flat. Significant directional asymmetry in otolith shape and length was detected in one roundfish species each, but its inconsistency across species and its small average amplitude (6·17% for shape and 1·99% for length) suggested that it has barely any biological relevance. Significant directional asymmetry in otolith shape and length was found for all flatfish species except otolith length for one species. Its average amplitude varied between 2·06 and 17·50% for shape and between 0·00 and 11·83% for length and increased significantly throughout ontogeny for two species, one dextral and one sinistral. The longer (length) and rounder otolith (shape) appeared to be always on the blind side whatever the species. These results suggest differential biomineralization between the blind and ocular inner ears in flatfish species that could result from perturbations of the proximal‐distal gradient of otolith precursors in the endolymph and the otolith position relative to the geometry of the saccular epithelium due to body morphology asymmetry and lateralized behaviour. The fact that asymmetry never exceeded 18% even at the individual level suggests an evolutionary canalization of otolith shape symmetry to avoid negative effects on fish hearing and balance. Technically, asymmetry should be accounted for in future studies based on otolith shape.  相似文献   

13.
14.
Fish otoliths are highly calcified concretions deposited in the inner ear and serve as a part of the hearing and balance systems. They consist mainly of calcium carbonate and a small amount of organic matrix. The latter component is considered to play important roles in otolith formation. Previously, we identified two major otolith matrix proteins, OMP-1 (otolith matrix protein-1) and Otolin-1, from salmonid species. To assess the function of these proteins in otolith formation, we performed antisense morpholino oligonucleotide (MO)-mediated knockdown of omp-1 and otolin-1 in zebrafish embryos. We first identified zebrafish cDNA homologs of omp-1 (zomp-1) and otolin-1 (zotolin-1). Whole-mount in situ hybridization then revealed that the expression of both zomp-1 and zotolin-1 mRNAs is restricted to the otic vesicles. zomp-1 mRNA was expressed from the 14-somite stage in the otic placode, but the zOMP-1 protein was detected only from 26-somite stage onwards. In contrast, zotolin-1 mRNA expression became clear around 72 hpf. MOs designed to inhibit zomp-1 and zotolin-1 mRNA translation, respectively, were injected into 1-2 cell stage embryos. zomp-1 MO caused a reduction in otolith size and an absence of zOtolin-1 deposition, while zotolin-1 MO caused a fusion of the two otoliths, and an increased instability of otoliths after fixation. We conclude that zOMP-1 is required for normal otolith growth and deposition of zOtolin-1 in the otolith, while zOtolin-1, a collagenous protein, is involved in the correct arrangement of the otoliths onto the sensory epithelium of the inner ear and probably in stabilization of the otolith matrix.  相似文献   

15.
Calcareous otoliths in the inner ears of fishes are necessary for proper hearing and vestibular function. Sagittal otoliths are usually composed of the calcium carbonate polymorph aragonite but may contain the polymorph vaterite, a phenomenon called otolith crystallization. The causes of otolith crystallization are poorly understood. Thyroid hormone (TH) can influence the chemical microenvironment and structure of the inner ear, suggesting that TH may influence otolith crystallization. The present study examined the effect of exogenous TH treatment on sagittal otolith crystallization and growth in larval and juvenile rainbow trout, Oncorhynchus mykiss. In the first experiment, 110?C179?day-old fish raised from TH-treated oocytes had significantly fewer sagittal otoliths containing the crystalline calcium carbonate polymorph vaterite as compared to untreated fish. Vaterite-containing otoliths were significantly longer than those containing the typical polymorph aragonite, although there was no effect of TH treatment on otolith length. In the second experiment, juveniles immersed in an exogenous solution of TH for 6?weeks had slightly longer otoliths (relative to fish length) than age-matched controls, but this effect was not significant. This juvenile population had a very high percentage (88.3?%) of vaterite sagittae overall and this percentage did not change significantly with treatment, suggesting the switch from aragonite to vaterite occurred prior to inclusion of the fish in the study. These results suggest that early manipulation of TH levels may affect calcium carbonate deposition on the otolith but that later TH exposure is unable to restore typical otolith composition.  相似文献   

16.
The objective of this study was to estimate a prey body size from the hard parts (e.g. otoliths) of a fish species frequently found in the guts of predators. Length–weight relationships between otolith size (length, height, weight and aspect ratio) and fish size (total length and weight) were determined for four fish species captured in the Arabian Sea by bottom trawl (2015 survey on‐board FORV Sagar Sampada, 200–300 m depth), off the west coast of India: Psenopsis cyanea, Pterygotrigla hemisticta, Bembrops caudimacula and Hoplostethus rubellopterus. No significant differences were noted between the size of the left and right otoliths (t test) in any of the four species. The length–weight relationship of the otolith in all four species showed a negative allometric growth pattern (t test, p < .05). The data fitted well to the regression model for otolith length (OL), otolith height (OH) and otolith weight (OW) to total length (TL) and total weight (TW). Results showed that these relationships are a helpful tool in predicting fish size from the otoliths and in calculating the biomass of these less‐studied fish species during feeding studies and palaentology.  相似文献   

17.
The fish otolith consists mainly of calcium carbonate and organic matrices, the latter of which may play important roles in the process of otolith formation. We previously identified two otolith matrix proteins, named otolith matrix protein-1 (OMP-1) and otolin-1, from the rainbow trout, Oncorhynchus mykiss, and the chum salmon, O. keta. In this study, recombinant proteins corresponding to OMP-1 and otolin-1 were synthesized using yeast and bacterial expression systems, respectively, to produce specific antibodies against each protein. Immunohistochemical analysis using these antisera revealed that in the otoliths of adult fish, OMP-1 and otolin-1 were colocalized along the daily rings possibly formed by alternate deposition of calcium carbonate and organic matrices. In the adult inner ear, OMP-1 was produced at most of the saccular epithelium, while otolin-1 was produced at a limited part of cylindrical cells located at the marginal zone of the sensory epithelium. In the embryonic inner ear, these proteins had already existed in the otolith primordia when calcification had commenced. In addition, otolin-1 was localized in the fibrous materials connecting otolith primordia and sensory epithelium at this stage. These results indicate that these proteins are required as essential components for otolith formation and calcification.  相似文献   

18.
Existing experimental embryological data suggests that the vestibular system initially develops in a very rigid and genetically controlled manner. Nevertheless, gravity appears to be a critical factor in the normal development of the vestibular system that monitors position with respect to gravity (saccule and utricle). In fact several studies have shown that prenatal exposure to microgravity causes temporary deficits in gravity-dependent righting behaviors, and prolonged exposure to hypergravity from conception to weaning causes permanent deficits in gravity-dependent righting behaviors. Data on hypergravity and microgravity exposure suggest some changes in the otolith formation during development, in particular the size although these changes may actually vary with the species involved. In adults exposed to microgravity there is a change in the synaptic density in the optic sensory epithelia suggesting that some adaptation may occur there. However, effects have also been reported in the brainstem. Several studies have shown synaptic changes in the lateral vestibular nucleus and in the nodulus of the cerebellum after neonatal exposure to hypergravity. We report here that synaptogenesis in the medial vestibular nucleus is retarded in developing rat embryos that were exposed to microgravity from gestation days 9 to 19.  相似文献   

19.
20.
Kato Y  Mogami Y  Baba SA 《Zoological science》2003,20(11):1373-1380
It has been reported that Paramecium proliferates faster when cultured under microgravity in orbit, and slower when cultured under hypergravity. This shows that the proliferation rate of Paramecium affected by gravity. The effect of gravity on Paramecium proliferation has been argued to be direct in a paper with an axenic culture under hypergravity. To clear up uncertainties with regard to the effect of gravity, Paramecium tetraurelia was cultured axenically under hypergravity (20 x g) and the time course of the proliferation was investigated quantitatively by a new non-invasive method, laser-beam optical slice, for measuring the cell density. This method includes optical slicing a part of the culture and computer-aided counting of cells in the sliced volume. The effects of hypergravity were assessed by comparing the kinetic parameters of proliferation that were obtained through a numerical analysis based on the logistic growth equation. Cells grown under 20 x g conditions had a significantly lower proliferation rate, and had a lower population density at the stationary phase. The lowered proliferation rate continued as long as cells were exposed to hypergravity (> one month). Hypergravity reduced the cell size of Paramecium. The long and short axes of the cell became shorter at 20 x g than those of control cells, which indicates a decrease in volume of the cell grown under hypergravity and is consistent with the reported increase in cell volume under microgravity. The reduced proliferation rate implies changes in biological time defined by fission age. In fact the length of autogamy immaturity decreased by measure of clock time, whereas it remained unchanged by measure of fission age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号