首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Summary The roles that Ca2+, calmodulin, and ATP play in the redistribution of conconavalin A (Con A) binding sites on the surface of mouse T-lymphoma cells were examined. Membranes of cells labeled with fluorescein-conjugated Con A (Fl-Con A) were made permeable (skinned) to ions and proteins by incubation in a solution containing no added Ca2+, 7mm EGTA, and ATP. The intracellular ionic and protein concentrations could then be varied, and the degree of Con A receptor capping monitored simultaneously. A graded increase (9.0 to 30%) was found in the number of capped cells with increasing Ca2+ concentration from 10–6–10–4.9 m. Increasing concentrations of trifluoperazine, chlorpromazine, and promethazine (1.5×10–6 to 1.0×10–4 m) in cell suspensions containing 10–4 m Ca2+ produced graded inhibition of capping in the same order that the drugs bind to calmodulin. Removal of extracellular Ca2+ dissociated (reversed) some of the caps into patches, thus reducing their number (12%). ATP was required for either capping or cap dissociation to occur. Addition of calmodulin (3.9×10–8–6.3×10–7 m) to the cell suspension increased the Ca2+ sensitivity. These results provide direct evidence that capping of Con A receptors is a reversible process (i) regulated by intracellular Ca2+ concentration, (ii) requiring ATP as an energy source, and (iii) susceptible to the influence of calmodulin. These findings are consistent with the hypothesis that the collection of surface receptor patches into cap structures is controlled by the interaction of actomyosin filaments, which in turn is regulated by a Ca2+-calmodulin-activated control system.  相似文献   

2.
Summary Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after an increase in Ca2+ from 10–7 to 10–6 m which is in the physiological range. Patch-clamp studies in cellattached mode show K+ channels with spontaneous activity and with characteristics similar to those of the K+ channel seen in excised patches. The single-channel conductance for outward current at 5 mm external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches of stretch-activated, nonselective cation channels and K+ channels in the presence of 3 mm Ca2+ in the pipette suggests a close spatial relationship between the two channels. In excised inside-out patches (with NMDG chloride on both sides) a small 5-pS chloride channel with low spontaneous activity is observed. The channel activity was not dependent on Ca2+ and could not be activated by membrane stretch (suction). In cell-attached mode singlechannel currents with characteristics similar to the channels seen in isolated patches are seen. In contrast to the channels seen in isolated patches, the channels in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other types of Cl channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl channel which show properties similar to the Cl channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two channels.  相似文献   

3.
Summary Using Ca2+- and K+-selective microelectrodes, the cytosolic free Ca2+ and K+ concentrations were measured in mouse fibroblastic L cells. When the extracellular Ca2+ concentration exceeded several micromoles, spontaneous oscillations of the intracellular free Ca2+ concentration were observed in the submicromolar ranges. During the Ca2+ oscillations, the membrane potential was found to oscillate concomitantly. The peak of cyclic increases in the free Ca2+ level coincided in time with the peak of periodic hyperpolarizations. Both oscillations were abolished by reducing the extracellular Ca2+ concentration down to 10–7 m or by applying a Ca2+ channel blocker, nifedipine (50 m). In the presence of 0.5mm quinine, an inhibitor of Ca2+-activated K+ channel, sizable Ca2+ oscillations still persisted, while the potential oscillations were markedly suppressed. Oscillations of the intracellular K+ concentration between about 145 and 140mm were often associated with the potential oscillations. The minimum phase of the K+ concentration was always 5 to 6 sec behind the peak hyperpolarization. Thus, it is concluded that the oscillation of membrane potential results from oscillatory increases in the intracellular Ca2+ level, which, in turn, periodically stimulate Ca2+-activated K+ channels.  相似文献   

4.
Summary The Ca2+-activated K+ channel in rat pancreatic islet cells has been studied using patch-clamp single-channel current recording in excised inside-out and outside-out membrane patches. In membrane patches exposed to quasi-physiological cation gradients (Na+ outside, K+ inside) large outward current steps were observed when the membrane was depolarized. The single-channel current voltage (I/V) relationship showed outward rectification and the null potential was more negative than –40 mV. In symmetrical K+-rich solutions the single-channelI/V relationship was linear, the null potential was 0 mV and the singlechannel conductance was about 250 pS. Membrane depolarization evoked channel opening also when the inside of the membrane was exposed to a Ca2+-free solution containing 2mm EGTA, but large positive membrane potentials (70 to 80 mV) were required in order to obtain open-state probabilities (P) above 0.1. Raising the free Ca2+ concentration in contact with the membrane inside ([Ca2+]i) to 1.5×10–7 m had little effect on the relationship between membrane potential andP. When [Ca2+]i was increased to 3×10–7 m and 6×10–7 m smaller potential changes were required to open the channels. Increasing [Ca2+]i further to 8×10–7 m again activated the channels, but the relationship between membrane potential andP was complex. Changing the membrane potential from –50 mV to +20 mV increasedP from near 0 to 0.6 but further polarization to +50 mV decreasedP to about 0.2. The pattern of voltage activation and inactivation was even more pronounced at [Ca2+]i=1 and 2 m. In this situation a membrane potential change from –70 to +20 mV increasedP from near 0 to about 0.7 but further polarization to +80 mV reducedP to less than 0.1. The high-conductance K+ channel in rat pancreatic islet cells is remarkably sensitive to changes in [Ca2+]i within the range 0.1 to 1 m which suggests a physiological role for this channel in regulating the membrane potential and Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

5.
Paramecium Na+ channels, which were Ca2+-calmodulin activated, were studied in the inside-out mode of patch clamp. After excision of the membrane patch, they were active in the presence of 10–5 to 10–3 m Ca2+ in the bath. They became much less active in the presence of 10–6 m Ca2+, and their activity subsided completely at 10–8 m Ca2+. A Hill plot showed a dissociation constant of 6 m for Ca2+ binding. This dissociation constant shifted to a submicromolar range in the presence of 1 mm Mg2+. The channels also exhibited a mild voltage dependence. When exposed to 10–8 m Ca2+ for an extended period of 2–4 min, channels were further inactivated even after bath Ca2+ was restored to 10–4 m. Whereas neither high voltage (+100 mV) nor high Ca2+ (10–3 m) was effective in reactivation of the inactive channels, addition of Paramecium wild-type calmodulin together with high Ca2+ to the bath restored channel activity without a requirement of additional Mg2+ and metabolites such as ATP. The channels reactivated by calmodulin had the same ion conductance, ion selectivity and Ca2+ sensitivity as those prior to inactivation. These inactivation and reactivation of the channels could be repeated, indicating that the direct calmodulin effect on the Na+ channel was reversible. Thus, calmodulin is a physiological factor critically required for Na+ channel activation, and is the Ca2+ sensor of the Na+-channel gating machinery.We thank C. Kung for his kind support, and A. Boileau for critical reading. Supported by grants from National Institutes of Health GM 22714-20 and 36386-09.  相似文献   

6.
Summary The effect of cholecystokinin (CCK) and internal Ca2+ on outward K+ current in isolated pig pancreatic acinar cells has been investigated using the patch-clamp method for whole-cell current recording under voltage-clamp conditions. CCK (2 × 10–10 M) applied to the bath evoked a marked increase in the outward K+ current associated with depolarizing voltage steps, and this effect was fully reversible and acutely dependent on the presence of external Ca2+. When strongly buffered Ca2+-EGTA solutions were used inside the cells CCK failed to evoke an effect. Increasing the internal Ca2+ concentration ([Ca2+] i ) from 5 × 10–10 M to 10–7 and 5 × 10–7 M mimicked the effect of CCK. It would appear therefore that CCK controls K+ conductance in the acinar cells via changes in the internal free ionized Ca2+ concentration.  相似文献   

7.
Summary Intracellular Ca2+ has been suggested to play an important role in the regulation of epithelial Na+ transport. Previous studies showed that preincubation of toad urinary bladder, a tight epithelium, in Ca2+-free medium enhanced Na+ uptake by the subsequently isolated apical membrane vesicles, suggesting the downregulation of Na+ entry across the apical membrane by intracellular Ca2+. In the present study, we have examined the effect of Ca2+-free preincubation on apical membrane Na+ transport in a leaky epithelium, i.e., brush border membrane (BBM) of rabbit renal proximal tubule. In contrast to toad urinary bladder, it was found that BBM vesicles derived from proximal tubules incubated in 1mm Ca2+ medium exhibited higher Na+ uptake than those derived from proximal tubules incubated in Ca2+-free EGTA medium. Such effect of Ca2+ in the preincubation medium was temperature dependent and could not be replaced by another divalent cation, Ba2+ (1mm). Ca2+ in the preincubation medium did not affect Na+-dependent BBM glucose uptake, and its effect on BBM Na+ uptake was pH gradient dependent and amiloride (10–3 m) sensitive, suggesting the involvement of Na+/H+ antiport system. Addition of verapamil (10–4 m) to 1mm Ca2+ preincubation medium abolished while ionomycin (10–6 m) potentiated the effect of Ca2+ to increase BBM Na+ uptake, suggesting that the effect of Ca2+ in the preincubation medium is likely to be mediated by Ca2+-dependent cellular pathways and not due to a direct effect of extracellular Ca2+ on BBM. Neither the proximal tubule content of cAMP nor the inhibitory effect of 8, bromo-cAMP (0.1mm) on BBM Na+ uptake was affected by the presence of Ca2+ in the preincubation medium, suggesting that Ca2+ in the preincubation medium did not increase BBM Na+ uptake by removing the inhibitory effect of cAMP. Addition of calmodulin inhibitor, trifluoperazine (10–4 m) to 1mm Ca2+ preincubation medium did not prevent the increase in BBM Na+ uptake. The effect of Ca2+ was, however, abolished when protein kinase C in the proximal tubule was downregulated by prolonged (24 hr) incubation with phorbol 12-myristate 13-acetate (10–6 m). In summary, these results show the Ca2+ dependency of Na+ transport by renal BBM, possibly through stimulation of Na+/H+ exchanger by protein kinase C.  相似文献   

8.
Summary In order to demonstrate the presence of a Ca2+-activated Cl-channel in theNitellopsis plasmalemma, tonoplast-free cells were prepared and their intracellular Ca2+ concentration was modified by internal perfusion. An increase in the Ca2+ concentration caused a large Cl efflux with a concomitant depolarization of the membrane potential. These changes were for the most part reversible. The critical Ca2+ concentration was about 4.0 m. Neither the Cl efflux nor the membrane depolarization showed a time-dependent inactivation. A Cl-channel blocker, A-9-C (9-anthracenecarboxylic acid) reduced both the Cl efflux and the magnitude of the membrane potential depolarization. A small increase in the intracellular Ca2+ concentration, which is caused by membrane excitation of tonoplast-free cells is not sufficient to activate this Ca2+-dependent Cl-channel.  相似文献   

9.
T. Kohno  T. Shimmen 《Protoplasma》1987,141(2-3):177-179
Summary To control the intracellular free Ca2+ concentration from the cell exterior, pollen tubes ofLilium longiflorum were treated with a Ca2+ ionophore, A23187. Cytoplasmic streaming was inhibited when the free Ca2+ concentration of the external medium ([Ca2+]) was raised to 5×10–6 M or higher. At [Ca2+] below 1×10–6 M, the rhodamine-phalloidin stained actin filaments appeared straight and thin. However, at [Ca2+] which inhibited cytoplasmic streaming, the actin filaments appeared fragmented. In pollen tubes, Ca2+ regulation of cytoplasmic streaming may be linked not only to myosin (Shimmen 1987) but also to actin.Abbreviations ATP adenosine-5-triphosphoric acid - [Ca2+] concentration of free Ca2+ - EGTA ethyleneglycol-bis-(-aminoethylether)N,N,N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - Rh-ph rhodamine-conjugated phalloidin  相似文献   

10.
Summary The kinetic and steady-state characteristics of calcium currents in cultured bovine adrenal chromaffin cells were analyzed by the patch-clamp technique. Whole cell inward Ca2+ currents, recorded in the presence of either 5.2 or 2.6mm Ca2+ exhibited a single, noninactivating component. To analyze the effects of Ca2+ and Bay K-8644 on the kinetics of the Ca2+ currents, we used a modified version of the Hodgkin-Huxley empirical model. At physiological [Ca2+] (2.5mm) the midpoint of the steady-state Ca2+-channel activation curve lay at –6.9 mV. Increasing the [Ca2+] to 5.2mm shifted the midpoint by –4.3 mV along the voltage axis. At the midpoint, changes in potential of 7.8 mV (for 5.2mm Ca2+) and 9.2 mV (for 2.5mm Ca2+) induced ane-fold change in the activation of the current. Increasing [Ca2+]0 from 2.5 to 5.2mm induced a marked increase in the rate constant for turning on the Ca2+ permeability. Conductances were estimated from the slope of the linear part of the currentvoltage relationships as 8.7 and 4.2 nS in the presence of 5.2 and 2.5mm Ca2+, respectively. Incubation of the cells in the presence of Bay K-8644 at increasing concentrations from 0.001 to 0.1 m increased the slope conductance from 4.2 to 9.6 nS. Further increases in the concentration of Bay K-8644 from 1 to 100 m induced a marked reduction in the conductance to 1.1 nS. In the presence of Bay K-8644 (0.1 m) the midpoint of the activation curve was shifted by 6.1 mV towards more negative potentials, i.e., from –6.9 to –13 mV. At the midpoint potential of –13 mV, a change in potential of 6.9 mV caused ane-fold change in Ca2+ permeability. The kinetic analysis showed that Bay K-8644 significantly reduced the size of the rate constant for turning off the Ca2+ permeability.  相似文献   

11.
Summary The relationship between Ca2+ release from sarcoplasmic reticulum, induced by elevated pH, tetraphenylboron (TPB) or chemical modification, and the change in the surface charge of the membranes as measured by the fluorescence intensity of anilinonaphthalene sulfonate (ANS) is examined. The stimulated Ca2+ release is inhibited by dicyclohexylcarbodiimide and external Ca2+. TPB, but not tetraphenylarsonium (TPA+), causes a decrease in ANS fluorescence, with 50% decrease occurring at about 5 m TPB. The decrease in ANS fluorescence as well as the inhibition of Ca2+ accumulation induced by TPB are prevented by TPA+. A linear relationship between the decrease in membrane surface potential and the extent of the Ca2+ released by TPB is obtained. Similar levels of [3H]TPB bound to sarcoplasmic reticulum membranes were obtained regardless of whether or not the vesicles have taken up Ca2+. The inhibition of Ca2+ accumulation and the [3H]TPB incorporation into the membranes were correlated. Ca2+ release from sarcoplasmic reticulum, by pH elevation, chemical modification or by addition of NaSCN (0.2 to 0.5m) or the Ca2+ ionophore ionomycin, is also accompanied by a decrease in ANS fluorescence intensity. However, chemical modification and elevated pH affects the surface potential much less than SCN or TPB do. These results suggest that the enhancement of Ca2+ release by these treatments is not due to a general effect on the membrane surface potential, but rather through the modification of a specific protein. They also suggest that membrane surface charges might play an important role in the control mechanism of Ca2+ release.  相似文献   

12.
Summary The influence of the asymmetric addition of various divalent cations and protons on the properties of active Ca2+ transport have been examined in intact human red blood cells. Active Ca2+ efflux was determined from the initial rate of45Ca2+ loss after CoCl2 was added to block Ca2+ loading via the ionophore A23187. Ca2+-ATPase activity was measured as phosphate production over 5 min in cells equilibrated with EGTA-buffered free Ca2+ in the presence of A23187. The apparent Ca affinity of active Ca2+ efflux (K 0.5=30–40 mol/liter cells) was significantly lower than that measured by the Ca2+-ATPase assay (K 0.5=0.4 m). Possible reasons for this apparent difference are considered. Both active Ca2+ efflux and Ca2+-ATPase activity were reduced to less than 5% of maximal levels (20 mmol/liter cells · hr) in Mg2+-depleted cells, and completely restored by reintroduction of intracellular Mg2+. Active Ca2+ efflux was inhibited almost completely by raising external CaCl2 (but not MgCl2) to 20mm, probably by interaction of Ca2+ at the externally oriented E2P conformation of the pump. Cd2+ was more potent than Ca2+ in this inhibition, while Mn2+ was less potent and 10mm Ba2+ was without effect. A Ca2+: proton exchange mechanism for active Ca2+ efflux was supported by the results, as external protons (pH 6–6.5) stimulated active Ca2+ efflux at least twofold above the efflux rate at pH 7.8 Ca2+ transport was not affected by decreasing the membrane potential across the red cell.  相似文献   

13.
Summary The Ca2+-activated nonselective cation channel in mouse pancreatic acini has been studied with the help of patch-clamp single-channel current recording in both the cell-attached conformation and in excised inside-out membrane patches. In intact resting mouse pancreatic acinar cells no unitary activity was observed. Adding saponin to the bath solution to disrupt the plasma membrane (apart from the isolated patch membrane from which current recording was made) evoked unitary inward current steps when the free ionized Ca2+ concentration in the bath ([Ca2+] i ) was 5×10–8 m or above. When an electrically isolated patch membrane was excised and the internal aspects of the plasma membrane were exposed to the bath solution, channel activation could be obtained when [Ca2+] i was 10–7 m or above. However, with the passage of time the total inward current declined and about 1 min after excision no unitary current steps could be observed. At this stage Ca2+ in micromolar concentration was needed to open the channels and several hundred micromoles of Ca2+ per liter were required for maximal channel activation. Our results indicate that the Ca2+-activated nonselective cation channel is more sensitive to internal Ca2+ than hitherto understood and that it may therefore play a role under physiological conditions in intact cells.  相似文献   

14.
Summary In the epithelium of rabbit gallbladder, in the nominal absence of bicarbonate, intracellular Cl activity is about 25mm, about 4 times higher than intracellular Cl activity at the electrochemical equilibrium. It is essentially not affected by 10–4 m acetazolamide and 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) even during prolonged exposures; it falls to the equilibrium value by removal of Na+ from the lumen without significant changes of the apical membrane potential difference. Both intracellular Cl and Na+ activities are decreased by luminal treatment with 25mm SCN; the initial rates of change are not significantly different. In addition, the initial rates of change of intracellular Cl activity are not significantly different upon Na+ or Cl entry block by the appropriate reduction of the concentration of either ion in the luminal solution. Luminal K+ removal or 10–5 m bumetanide do not affect intracellular Cl and Na+ activities or Cl influx through the apical membrane. It is concluded that in the absence of bicarbonate NaCl entry is entirely due to a Na+–Cl symport on a single carrier which, at least under the conditions tested, does not cotransport K+.  相似文献   

15.
Summary Measurements of unidirectional calcium fluxes in stripped intestinal epithelium of the tilapia,Oreochromis mossambicus, in the presence of ouabain or in the absence of sodium indicated that calcium absorption via the fish intestine is sodium dependent. Active Ca2+ transport mechanisms in the enterocyte plasma membrane were analyzed. The maximum capacity of the ATP-dependent Ca2+ pump (V m :0.63 nmol·min–1 mg–1,K m : 27nm Ca2+) is calculated to be 2.17 nmol·min–1·mg–1, correcting for 29% inside-out oriented vesicles in the membrane preparation. The maximum capacity of the Na+/Ca2+ exchanger with high affinity for Ca2+ (V m :7.2 nmol·min–1·mg–1,K m : 181nm Ca2+) is calculated to be 13.6 nmol·min–1·mg–1, correcting for 53% resealed vesicles and assuming symmetrical behavior of the Na+/Ca2+ exchanger. The high affinity for Ca2+ and the sixfold higher capacity of the exchanger compared to the ATPase suggest strongly that the Na+/Ca2+ exchanger will contribute substantially to Ca2+ extrusion in the fish enterocyte. Further evidence for an important contribution of Na+/Ca2+ exchange to Ca2+ extrusion was obtained from studies in which the simultaneous operation of ATP-and Na+-gradient-driven Ca2+ pumps in inside-out vesicles was evaluated. The fish enterocyte appears to present a model for a Ca2+ transporting cell, in which Na+/Ca2+ exchange activity with high affinity for Ca2+ extrudes Ca2+ from the cell.  相似文献   

16.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

17.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

18.
Ilse Foissner 《Protoplasma》1990,154(2-3):80-90
Summary The formation of wall appositions (plugs) by ionophore A 23187, CaCl2, LaCl3, and nifedipine was studied in mature internodal cells of characeaen algae. CaCl2 at concentrations above 10–2M induces thick fibrillar plugs without callose inNitella flexilis. InChara corallina andNitella flexilis ionophore A 23187 (1.25×10–5 to 5×10–5M) and LaCl3 (7.5×10–5 to 2.5×10–4M) cause flat appositions which contain callose and have a more granular structure. Plug formation by ionophore A 23187, CaCl2, and LaCl3 is pH-dependent and occurs beneath the alkaline regions of the cell. Nifedipine (10–4 to 10–5M) induces plugs inNitella flexilis after previous injury. These callose-containing wall appositions consist of a heterogeneous granular core which is covered by a fibrillar layer. The results of this work are compared with previous studies on wound wall formation and chlortetracycline (CTC)-induced plug formation which reveal that abundant coated vesicles occur only when a thick fibrillar wall layer is formed. Neither LaCl3 nor nifedipine inhibit the formation of CaCl2- or CTC-plugs. The unusual effects of these substances, which normally act as Ca2+ antagonists and therefore should prevent and not induce plug formation, are discussed. It is suggested that La3+ mimicks the effects of calcium and that nifedipine binding to the Ca2+ channels is altered in the alkaline regions of characean internodes and allows an influx of Ca2+.Abbreviations AFW artificial fresh water - CTC chlortetracycline - DCMU dichlorphenyldimethylurea - DMSO dimethylsulfoxide - EGTA ethyleneglycoltetraacetic acid - MES 2-(N-morpholino) ethanesulfonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - TAPS N-tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid  相似文献   

19.
Summary The patch-clamp technique and measurements of single cell [Ca2+] i have been used to investigate the importance of extracellular Na+ for carbohydrate-induced stimulation of RINm5F insulin-secreting cells. Using patch-clamp whole-cell (current-clamp) recordings the average cellular transmembrane potential was estimated to be –60±1 mV (n=83) and the average basal [Ca2+] i 102±6nm (n=37). When challenged with either glucose (2.5–10mm) ord-glyceraldehyde (10mm) the cells depolarized, which led to the initiation of Ca2+ spike potentials and a sharp rise in [Ca2+] i . Similar effects were also observed with the sulphonylurea compound tolbutamide (0.01–0.1mm). Both the generation of the spike potentials and the increase in [Ca2+] i were abolished when Ca2+ was removed from the bathing media. When all external Na+ was replaced with N-methyl-d-glucamine, in the continued presence of either glucose,d-glyceraldehyde or tolbutamide, a membrane repolarization resulted, which terminated Ca2+ spike potentials and attenuated the rise in [Ca2+] i . Tetrodotoxin (TTX) (1–2 m) was also found to both repolarize the membrane and abolish secretagogue-induced rises in [Ca2+] i .  相似文献   

20.
In the rabbit gallbladder epithelium, hydrochlorothiazide (HCTZ) was shown to inhibit the transepithelial NaCl transport and the apical Na+-Cl symport, to depolarize the apical membrane potential and to enhance the cell-to-lumen Cl backflux (radiochemically measured), this increase being SITS-sensitive. To better investigate the causes of the depolarization and the Cl backflux increase, cells were punctured with conventional microelectrodes on the luminal side (incubation in bicarbonate-free saline at 27°C) and the apical membrane potential (V m) was studied either with prolonged single impalements or with a set of short multiple impalements. The maximal depolarization was of 3–4 mV and was reached with 2.5 × 10–4 m HCTZ. It was significantly enhanced by reducing luminal Cl concentration to 30 mm; it was abolished by SCN, furosemide, SITS; it was insensitive to DPC. SITS converted the depolarization into a hyperpolarization of about 4 mV; this latter was apamin, nifedipine and verapamil sensitive. It was concluded that HCTZ concomitantly opens apical Cl and (probably) Ca2+ conductances and, indirectly, a Ca2+-sensitive, apamin inhibitable K+ conductance: since the intracellular Cl activity is maintained above the value predicted at the electrochemical equilibrium, the opening of the apical Cl conductance depolarizes V mand enhances Cl backflux. In the presence of apamin or verapamil, to avoid the hyperpolarizing effects due to HCTZ, the depolarization elicited by this drug was fully developed (7–10 mV) and proved to be Ca2+ insensitive. On this basis and measuring the transepithelial resistance and the apical/basolateral resistance ratio, the Cl conductance opened by HCTZ has been estimated and the Cl backflux increase calculated: it proved to be in the order of that observed radiochemically. The importance of this Cl leak to the lumen in the overall inhibition of the transepithelial NaCl transport by HCTZ has been evaluated.This research was supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica, Rome, Italy. We are very grateful to prof. G. Meyer and dr. G. Bottà for helpful discussion and criticism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号