首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Heterodichogamy, the coexistence of morphs differing in the time when the shift between male and female phases occurs, is a rare sexual dimorphism derived from synchronous dichogamy. In dichogamous populations, plants need to adjust the temporal sex role to deal with the negative frequency dependent selection imposed by population sex ratios. However, such temporal adjustment may be constrained in dichogamous species with bisexual flowers and short floral longevities (<2 days) and therefore the reciprocal floral strategy can easily invade the population, ultimately leading to heterodichogamy. We predict that heterodichogamy has evolved in species with short floral longevities. To test this prediction, we compiled data on floral longevity for 377 dichogamous and heterodichogamous species with bisexual flowers and ran a phylogenetic logistic regression between floral strategy (dichogamy/heterodichogamy) and floral longevity. The results showed that heterodichogamous species had significantly shorter floral longevities than dichogamous species. This result together with the fact that evolutionary transitions always occurred from dichogamy to heterodichogamy supports the conclusion of the existence of a significant and negative evolutionary correlation between the floral longevity and the probability to evolve heterodichogamy from dichogamy in bisexual species. We discuss that the rarity of heterodichogamy in nature may be the result of other selective pressures towards long floral longevity in dichogamous species.  相似文献   

2.
Myriophyllum ussuriense has been described as dioecious but monoecious plants were newly found from some populations in south-western Japan. Sex expression of monoecious plants proved labile and they sometimes bore male or female flowers alone. On the other hand, sex expression of dioecious plants was stable and seemed to be fixed genetically. M. ussuriense may be still in the course of differentiation from monoecy to dioecy. Received 13 April 2001/ Accepted in revised form 22 May 2001  相似文献   

3.
Clonality is often implicated in models of the evolution of dioecy, but few studies have explicitly compared clonal structure between plant sexual systems, or between the sexes in dioecious populations. Here, we exploit the occurrence of monoecy and dioecy in clonal Sagittaria latifola (Alismataceae) to evaluate two main hypotheses: (i) clone sizes are smaller in monoecious than dioecious populations, because of constraints imposed on clone size by costs associated with geitonogamy; (ii) in dioecious populations, male clones are larger and flower more often than female clones because of sex‐differential reproductive costs. Differences in clone size and flowering could result in discordance between ramet‐ and genet‐based sex ratios. We used spatially explicit sampling to address these hypotheses in 10 monoecious and 11 dioecious populations of S. latifolia at the northern range limit in Eastern North America. In contrast to our predictions, monoecious clones were significantly larger than dioecious clones, probably due to their higher rates of vegetative growth and corm production, and in dioecious populations, there was no difference in clone size between females and males; ramet‐ and genet‐based sex ratios were therefore highly correlated. Genotypic diversity declined with latitude for both sexual systems, but monoecious populations exhibited lower genotypic richness. Differences in life history between the sexual systems of S. latifolia appear to be the most important determinants of clonal structure and diversity.  相似文献   

4.
In this analysis, we attempt to understand how monoecy and dioecy drive spatial genetic structure (SGS) in plant populations. For this purpose, plants of the genus Ficus were used as a comparative model due to their particular characteristics, including high species diversity, variation in life histories, and sexual systems. One of the main issues we assessed is whether dioecious fig tree populations are more spatially genetically structured than monoecious populations. Using the Sp statistic, which allows for quantitative comparisons among different studies, we compared the extent of SGS between monoecious and dioecious Ficus species. To broaden our conclusions we used published data on an additional 27 monoecious and dioecious plant species. Furthermore, genetic diversity analyses were performed for two monoecious Ficus species using 12 microsatellite markers in order to strengthen our conclusions about SGS. Our results show that dioecy, more than monoecy, significantly contributes to SGS in plant populations. On average, the estimate of Sp was six times higher for dioecious Ficus species than monoecious Ficus species and it was two times higher in dioecious than monoecious plant species. Considering these results, we emphasize that the long‐distance pollen dispersal mechanism in monoecious Ficus species seems to be the dominant factor in determining weak spatial genetic structure, high levels of genetic diversity, and lack of inbreeding. Although Ficus constitute a model species to study SGS, a more general comparison encompassing a wider range of plants is required in order to better understand how sexual systems affect genetic structure.  相似文献   

5.
The evolution of breeding systems was studied in the genus Acer, with special attention to the origin of androdioecy and dioecy, using a phylogenetic approach. Parsimony and maximum-likelihood techniques were used to infer the ancestral character state and trends in the evolution of breeding systems. Information on breeding systems was obtained from the literature, and phylogenetic relationships were taken from three published phylogenies. Although a general trend from duodichogamy to dioecy through heterodichogamy has been proposed for the genus Acer, our results show that a general trend is not detected when phylogenetic relationships are taken into account. Dioecy appeared as a derived state that evolved at least three times and never reversed towards other states. Three different paths to dioecy have been followed in the genus Acer: from heterodichogamous androdioecy; from heterodichogamous trioecy; and from dichogamous subdioecy. Therefore, although the best documented cases of evolution of androdioecy indicate that this breeding system evolves from dioecy, in the genus Acer the opposite situation occurs (androdioecy leading to dioecy). Here we discuss the role of inbreeding avoidance and sexual specialization as selective forces driving the evolution of dioecy in the genus Acer.  相似文献   

6.
Aquatic plants commonly have extensive geographical distributions, implying few restrictions to dispersal. Here we investigate the postglacial history of an aquatic plant with contrasting sexual systems (monoecy and dioecy), which are predicted to affect dispersal ability. We examined the distribution of cpDNA haplotypes using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) among 76 populations (32 monoecious, 38 dioecious, two mixed and four undetermined populations) of Sagittaria latifolia sampled throughout eastern North America. We also use these data to investigate the polarity of the evolutionary transition between monoecy and dioecy. Using PCR-RFLP, we identified eight cpDNA haplotypes. All haplotypes were found in unglaciated areas of the species' range, clustered primarily in the southeastern United States, providing evidence that glacial refugia probably occurred in this area. Genetic diversity (hT) was more than six times greater among monoecious compared to dioecious populations. All seven of the haplotypes for which the sexual system could be determined were represented among monoecious populations. In contrast, only four haplotypes were detected in dioecious populations and 94% of individuals from dioecious populations possessed a single haplotype. Monoecious populations possessing this widespread haplotype were restricted to the southern portion of the range, indicating that dioecy probably originated in this region and then spread northwards. The distribution of cpDNA haplotypes in dioecious populations represents a subset of the variation found in monoecious populations, a pattern expected if dioecy has evolved from monoecy in S. latifolia.  相似文献   

7.
The existence of monoecious and dioecious populations within plant species is rare. This limits opportunities to investigate the ecological mechanisms responsible for the evolution and maintenance of these contrasting sexual systems. In Sagittaria latifolia, an aquatic flowering plant, monoecious and dioecious populations exist in close geographic proximity but occupy distinct wetland habitats differing in the relative importance of disturbance and competition, respectively. Life-history theory predicts contrasting evolutionary responses to these environmental conditions. We propose that the maintenance of monoecy and dioecy in S. latifolia is governed by ecological selection of divergent life-history strategies in contrasting habitats. Here we evaluate this hypothesis by comparing components of growth and reproduction between monoecious and dioecious populations under four conditions: natural populations, a uniform glasshouse environment, a common garden in which monoecious and dioecious populations and their F1 progeny were compared, and a transplant experiment using shaded and unshaded plots in a freshwater marsh. Plants from dioecious populations were larger in size and produced heavier corms in comparison with monoecious populations. Monoecious populations flowered earlier and produced more flowers, clonal ramets, and corms than dioecious populations. The life-history differences between the sexual systems were shown to have a quantitative genetic basis, with F1 progeny generally exhibiting intermediate trait values. Survival was highest for each sexual system in field plots that most closely resembled the habitats in which monoecious (unshaded) and dioecious (shaded) populations grow. These results demonstrate that monoecious and dioecious populations exhibit contrasting patterns of investment in traits involved with growth and reproduction. Selection for divergent life histories between monoecious and dioecious populations of S. latifolia appears to be the principal mechanism maintaining the integrity of the two sexual systems in areas of geographic overlap.  相似文献   

8.
One of the pathways to dioecy is via heterodichogamy, a system including protandrous (flowering male first) and protogynous (female first) plants. Using a research crane the reproductive ecology of the heterodichogamous Acer pseudoplatanus was studied in 74 mature trees over 2 years. The synchronized flowering phenology of the trees resulted in reciprocal pollination between the two morphs. Protandrous trees were more numerous (3:1), had more female flowers (2–3:1), had much less pollen on their stigmas (1:15) and had a much lower seed to fruit ratio (1:3–4). The pollinators were probably breeding thrips. The heterodichogamy of A. pseudoplatanus is confirmed and underlined as a functioning ecological system. Depending on the way pollination efficiency changes in time, either of the morphs can be interpreted as “more female” or “more male”. The evolution of heterodichogamy towards dioecy thus depends on more components of the reproductive ecology than have been assumed.  相似文献   

9.
The sex expression inThymelaea hirsuta was assessed in five habitats in the western Mediterranean desert of Egypt. The survey over two main flowering periods indicated that the sexual expression of this plant is complex and labile. Beside the dioecious male and female states, five monoecious states were detected. The dioecious states are more abundant and less labile. There is a clear shift from monoecious towards dioecious states and in general favour of males from the first (late autumn) to the second (late winter) flowering period. These results are discussed in view of the adaptive theories and evolution.  相似文献   

10.
Dioecy has evolved independently, many times, among unrelated taxa. It also appears to have evolved along two contrasting pathways: (1) from hermaphroditism via monoecy to dioecy and (2) from hermaphroditism via gynodioecy to dioecy. Most dioecious plants have close cosexual relatives with some means of promoting outcrossing (e.g., herkogamy, dichogamy, self-incompatibility, or monoecy). To the extent that these devices prevent inbreeding, the evolution of dioecy in these species cannot logically be attributed to selection for outcrossing. In these cases, the evolution of dioecy is, we believe, due to selection for sexual specialization. However, in other species, that lack outbreeding close relatives, dioecy may have evolved from gynodioecy (males and hermaphrodites) as an outbreeding device. Subsequent disruptive selection and selection for sexual specialization may have also shaped the evolution of dioecy from gynodioecy in these species, resulting in two genetically determined, constant sex morphs. Both pathways for the evolution of dioecy require the operation of disruptive selection, though the gynodioecy route involves more restrictive disruptive selection and a genetic designation of gender. In contrast, the monoecy route is not dependent on the genetic designation of two sex morphs, but, rather, allows the possibility of sexual intermediates and sexual lability. Both pathways produce one morph in which maleness is suppressed and another in which the female function is negligible or nonexistent—the reproductive mode recognized as dioecy. Evidence is presented here to support the thesis that instances of sexual lability, the presence of an array of sexual intermediates, sex-switching, and sexual niche segregation can be explained in terms of the pathway that was taken in the evolution of a particular dioecious species. In addition, the degree of sexual dimorphism seen in dioecious species is correlated with mode of pollination (insector wind-pollinated) and other ecological factors.  相似文献   

11.
Figs (Ficus, Moraceae) are either monoecious or gynodioecious depending on the arrangement of unisexual florets within the specialized inflorescence or syconium. The gynodioecious species are functionally dioecious due to the impact of pollinating fig wasps (Hymenoptera: Agaonidae) on the maturation of fig seeds. The evolutionary relationships of functionally dioecious figs (Ficus subg. Ficus) were examined through phylogenetic analyses based on the internal transcribed spacer (ITS) region of nuclear ribosomal DNA and morphology. Forty-six species representing each monoecious subgenus and each section of functionally dioecious subg. Ficus were included in parsimony analyses based on 180 molecular characters and 61 morphological characters that were potentially informative. Separate and combined analyses of molecular and morphological data sets suggested that functionally dioecious figs are not monophyletic and that monoecious subg. Sycomorus is derived within a dioecious clade. The combined analysis indicated one or two origins of functional dioecy in the genus and at least two reversals to monoecy within a functionally dioecious lineage. The exclusion of breeding system and related characters from the analysis also indicated two shifts from monoecy to functional dioecy and two reversals. The associations of pollinating fig wasps were congruent with host fig phylogeny and further supported a revised classification of Ficus.  相似文献   

12.
Considerable effort has been spent documenting correlations between dioecy and various ecological and morphological traits for the purpose of testing hypotheses about conditions that favor dioecy. The data analyzed in these studies, with few exceptions, come from local floras, within which it was possible to contrast the subsets of dioecious and nondioecious taxa with regard to the traits in question. However, if there is a strong phylogenetic component to the presence or absence of dioecy, regional sampling may result in spurious associations. Here, we report results of a categorical multivariate analysis of the strengths of various associations of dioecy with other traits over all flowering plants. Families were scored for presence of absence of monoecy or dioecy, systematic position, numbers of species and genera, growth forms, modes of pollination and dispersal, geographic distribution, and trophic status. Seven percent of angiosperm genera (959 of 13,500) contain at least some dioecious species, and ≈6% of angiosperm species (14,620 of 240,000) are dioecious. The most consistent associations in the data set relate the presence of dioecy to monoecy, wind or water pollination, and climbing growth. At both the family and the genus level, insect pollination is underrepresented among dioecious plants. At the family level, a positive correlation between dioecy and woody growth results primarily from the association between dioecy and climbing growth (whether woody or herbaceous) because neither the tree nor the shrub growth forms alone are consistently correlated with a family's tendency to include dioecious members. Dioecy appears to have evolved most frequently via monoecy, perhaps through divergent adjustments of floral sex ratios between individual plants. Monoecy itself is related to abiotic pollination and climbing growth as revealed by multivariate analysis. Dioecy and monoecy are concentrated in the less advanced superorders of Thorne (1992) and subclasses of Cronquist (1988). The frequency of dioecy found in a local flora therefore reflects the level of dioecy in its particular pool of families as much as, or more than, local selective factors. The positive associations of dioecy with abiotic pollination and monoecy are related to floral developmental and morphological attributes, as is the negative association with bird and bat pollination; the positive association of dioecy with climbing growth is tentatively explained in terms of differential selection for optimal resource allocation to sexual function. If rapid upward growth is at a premium in climbers and if fruit set at least temporarily inhibits growth or requires the production of thicker, more slowly growing stems to support heavy fruits, it might be advantageous to postpone femaleness. If the effect is strong, this may favor male plants.  相似文献   

13.
The role of mutations of small versus large effect in adaptive evolution is of considerable interest to evolutionary biologists. The major evolutionary pathways for the origin of dioecy in plants (the gynodioecy and monoecy-paradioecy pathways) are often distinguished by the number of mutations involved and the magnitude of their effects. Here, we investigate the genetic and environmental determinants of sex in Sagittaria latifolia, a species with both monoecious and dioecious populations, and evaluate evidence for the evolution of dioecy via gynodioecy or monoecy-paradioecy. We crossed plants of the two sexual systems to generate F1, F2 and backcross progeny, and grew clones from dioecious populations in low-and high-fertilizer conditions to examine sex inconstancy in females and males. Several lines of evidence implicate two-locus control of the sex phenotypes. In dioecious populations sex is determined by Mendelian segregation of alleles, with males heterozygous at both the male- and female-sterility loci. In monoecious populations, plants are homozygous for alleles dominant to male sterility in females and recessive to female sterility in males. Experimental manipulation of resources revealed sex inconstancy in males but not females. These results are consistent with predictions for the evolution of dioecy via gynodioecy, rather than the expected monoecy-paradioecy pathway, given the ancestral monoecious condition.  相似文献   

14.
Siparunaceae comprise Glossocalyx with one species in West Africa and Siparuna with 65 species in the neotropics; all have unisexual flowers, and 15 species are monoecious, 50 dioecious. Parsimony and maximum likelihood analyses of combined nuclear ribosomal ITS and chloroplast trnL-trnF intergenic spacer sequences yielded almost identical topologies, which were used to trace the evolution of the two sexual systems. The African species, which is dioecious, was sister to all neotropical species, and the monoecious species formed a grade basal to a large dioecious Andean clade. Dioecy evolved a second time within the monoecious grade. Geographical mapping of 6,496 herbarium collections from all species sorted by sexual system showed that monoecy is confined to low-lying areas (altitude < 700 m) in the Amazon basin and southern Central America. The only morphological trait with a strong phylogenetic signal is leaf margin shape (entire or toothed), although this character also correlates with altitude, probably reflecting selection on leaf shapes by temperature and rainfall regimes. The data do not reject the molecular clock, and branch lengths suggest that the shift to dioecy in the lowlands occurred many million years after the shift to dioecy in the ancestor of the Andean clade.  相似文献   

15.

Background and Aims

Heterodichogamy (a dimorphic breeding system comprising protandrous and protogynous individuals) is a potential starting point in the evolution of dioecy from hermaphroditism. In the genus Acer, previous work suggests that dioecy evolved from heterodichogamy through an initial spread of unisexual males. Here, the question is asked as to whether the different morphs in Acer opalus, a species in which males co-exist with heterodichogamous hermaphrodites, differ in various components of male in fitness.

Methods

Several components of male fertility were analysed. Pollination rates in the male phase were recorded across one flowering period. Pollen viability was compared among morphs through hand pollinations both with pollen from a single sexual morph and also simulating a situation of pollen competition; in the latter experiment, paternity was assessed with microsatellite markers. It was also determined whether effects of genetic relatedness between pollen donors and recipients could influence the siring success. Finally, paternal effects occurring beyond the fertilization process were tested for by measuring the height reached by seedlings with different sires over three consecutive growing seasons.

Key Results

The males and protandrous morphs had higher pollination rates than the protogynous morph, and the seedlings they sired grew taller. No differences in male fertility were found between males and protandrous individuals. Departures from random mating due to effects of genetic relatedness among sires and pollen recipients were also ruled out.

Conclusions

Males and protandrous individuals are probably better sires than protogynous individuals, as shown by the higher pollination rates and the differential growth of the seedlings sired by these morphs. In contrast, the fertility of males was not higher than the male fertility of the protandrous morph. While the appearance of males in sexually specialized heterodichogamous populations is possible, even in the absence of a fitness advantage, it is not clear that males can be maintained at an evolutionary equilibrium with two classes of heterodichogamous hermaphrodites.Key words: Acer opalus, heterodichogamy, male fertility, microsatellites, paternal effects, pollen competition, pollination rates, genetic relatedness  相似文献   

16.
The reproductive biology of Grayia brandegei was examined. Although monoecious, Grayia brandegei exhibits a phenotypic dimorphism of protogynous and protandrous mating types known as heterodichogamy. For individual plants, the temporal separation of staminate and pistillate flowering phases appears to be complete. No self-fertilization is possible in protandrous plants, but may be possible in protogynous plants provided pistillate flowers remain unfertilized. Flowering phases of protogynous and protandrous mating types are synchronized and reciprocal, ensuring cross-fertilization between mating types. Less than 15% overlap of sexual functions occurred between plants of the same mating type. Protogynous and protandrous plants were randomly dispersed in the environment and in relation to each other. Mating type frequencies did not differ significantly from 1:1. We discuss the possibility of a heterodichogamous pathway to dioecy.  相似文献   

17.
Aims Sexual systems influence many components of the ecology and evolution of plant populations and have rarely been documented in subtropical evergreen broad-leaved forests (SEBLF). Here we report frequency distribution and ecological correlates of plant sexual systems in SEBLF at Ailao Mountains, and compare our results with that of tropical and cool temperate forests.Methods We examine the sexual systems of 703 species of woody angiosperms belonging to 103 families and 296 genera based on a comprehensive survey of SEBLF at Ailao Mountains Natural Reserve. Information of plant sexual systems and ecological traits were mainly based on published literatures and specimens as well as our field observations. The associations between plant sexual system and ecological traits were assessed with chi-square tests.Important findings Among these species, 60.2% were hermaphroditic, 15.8% were monoecious and 24.0% were dioecious. The percentage of dioecious sexual system among tree species (22.2%) in SEBLF was comparable to those of tropical tree floras, but much higher than those of temperate forests at North America. The percentage of monoecious sexual system among tree species (30.1%) in SEBLF was higher than that of tropical tree floras, but much lower than those of temperate forests at North America. Monoecy was significantly associated with the tree growth form and was relatively common in temperate genera. Dioecy was significantly associated with fleshy fruits and monoecy was significantly associated with dry fruit type in SEBLF. The high percentage of diclinous sexual systems (monoecy and dioecy) in SEBLF may be associated with the origin of the flora and the prevalence of relatively small inconspicuous flowers of the forests in the Oriental Region.  相似文献   

18.
Urtica dioica (“stinging nettle”) includes both dioecious and monoecious forms. In most sexually dimorphic angiosperm species, the genetic mechanisms of sex determination are completely unknown. The few species that include both monoecious and dioecious forms provide an unusual opportunity to examine the genetic mechanisms that underlie the separation of sexual functions, through crossing experiments and analysis of progeny segregation. Our focus is on the genetic mechanisms distinguishing monoecious and dioecious forms of U. dioica. A complicated picture of sex determination in this species has resulted from crosses between dioecious and monoecious subspecies, as well as between dioecious and monoecious forms of the same subspecies. Most significant is evidence for a maternal influence on sex determination and for the possibility of gynodioecy as an intermediate stage in the evolutionary pathway to dioecy. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
Correns's 1903 (Berichte der Deutschen Botanischen Gesellschaft 21: 133-147) crosses between a monoecious and a dioecious species of Bryonia revealed the simple Mendelian inheritance of dioecy and provided the first instance of an XY sex determination system in any organism. Bryonia ranges from the Canary Islands to Central Asia and comprises seven dioecious and three monoecious species; its closest relative, Ecballium elaterium, has dioecious and monoecious populations. We used chloroplast (cp) and nuclear (nr) gene phylogenies to infer sexual system evolution in Bryonia. We also tested for associations between sexual system and ploidy level, based on published and original chromosome counts. Conflicts between cp and nr topologies imply that the dioecious hexaploid B. cretica arose from hybridization(s), probably involving the dioecious diploids B. dioica, B. syriaca, and/or B. multiflora. A tetraploid dioecious endemic on Corsica and Sardinia probably originated from B. dioica via autopolyploidy. While the cp phylogeny resolves few species relationships, the nr tree implies at least two evolutionary changes in sexual system. There is no correlation between sexual system and ploidy level. Molecular clocks suggest that the deepest divergence, between a species on the Canary Islands and the ancestor of all remaining species, occurred ca. 10 million years ago.  相似文献   

20.
The need for reproductive assurance during dispersal, along with the pressure of local mate competition, means that the importance of frequent or repeated colonization is implicit in the literature on sexual system evolution. However, there have been few empirical tests of the association between colonization history and sexual system in plants, and none within a single species. Here we use patterns of genetic diversity to provide such a test in the Mercurialis annua species complex, which spans the range of systems from self-compatible monoecy through androdioecy to dioecy. This variation has been hypothesized to result from differing patterns of metapopulation turnover and recolonization. Because monoecy should be favored during colonization, androdioecy and dioecy will be maintained only in regions with low rates of local extinction and recolonization, and these differences should also be reflected in patterns of neutral genetic diversity. We show that monoecious populations of M. annua display lower within-population genetic diversity than androdioecious populations and higher genetic differentiation than dioecious and androdioecious populations, as predicted by metapopulation models. In contrast, regional diversity in M. annua appears to be primarily a product of postglacial range expansion from two refugia in the eastern and western Mediterranean Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号