首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
探讨脑源性神经营养因子/酪氨酸激酶受体B(BDNF/TrkB)信号通路激活参与何首乌苷(PMG)对过氧化氢(H2O2)诱导神经元氧化应激损伤的保护作用。实验采用神经元原代培养,建立大鼠乳鼠海马神经元氧化应激损伤模型。实验结果显示高浓度的H2O2与MTT测定的细胞存活率降低相关,选择细胞存活率在40%~50%之间的200μmol/LH2O2浓度作为氧化应激损伤的实验浓度。与模型组相比,PMG预处理组(200μmol/L)可抑制H2O2诱导的神经元损伤(P<0.001)。TUNEL和β-微管蛋白III荧光染色显示PMG保护H2O2诱导的神经细胞损伤,明显降低细胞凋亡率(P<0.001),细胞骨架形态恢复正常。与PMG+H2O2预处理组相比较,当加入BDNF/TrkB信号转导通路阻断剂K252a后,PMG+H2O2+K252a组神经元细胞存活率大幅度下降(P<0.01),细胞骨架形态呈损伤状态。同时,我们发现PMG预处理恢复H2O2诱导的BDNF和P-TrkB的低表达水平,并且用K252a阻断BDNF/TrkB信号传导抑制了PMG对BDNF和P-TrkB表达水平的影响(P<0.01)。综上所述,何首乌苷可能通过激活BDNF/TrkB信号转导通路及维护神经元骨架的完整,实现对大鼠海马神经元氧化应激损伤的拮抗作用。  相似文献   

2.
Abundant studies have shown possible links between low levels of brain-derived neurotrophic factor (BDNF) and neurological diseases such as Alzheimer's disease, Parkinson's disease, and depression, as well as stress and anxiety; therefore, BDNF could be a therapeutic target for neurological disorders. In the present study, a positional scanning-synthetic peptide combinatorial library was utilized to identify a peptide modulator of BDNF expression in the hippocampal neuronal cell line, H19-7. A novel tripeptide (Neuropep-1) induced a significant increase of BDNF mRNA and protein levels in H19-7 cells. Pre-treatment of TrkB inhibitor (K252a) did not block Neuropep-1-induced BDNF up-regulation. These results indicate that Neuropep-1 may up-regulate BDNF expression that might be independent of the TrkB receptor pathway. Tail vein injection of Neuropep-1 significantly up-regulated BDNF expression, TrkB phosphorylation, and its downstream signals including activation of Akt, ERK, and cAMP response element binding in the rat hippocampus. To evaluate improvement of spatial learning and memory (SLM) by Neuropep-1-induced BDNF up-regulation, the Y-maze and Morris water maze tests were performed. These results showed Neuropep-1 injection improved SLM performance with increase of BDNF and TrkB expression, activation of TrkB downstream signals in rat hippocampus compared with the control group. However, phosphorylation levels of TrkB were not changed when it was normalized to the level of TrkB expression. The difference on TrkB phosphorylation in Neuropep-1-injected rats may be affected by behavioral tests. These results suggest that Neuropep-1 may improve SLM via activation of the BDNF/TrkB signaling pathway in the rat hippocampus. Therefore, our findings represent that Neuropep-1 might be a potential candidate for treatment of learning and memory disorders as well as neurological diseases involving the abnormal expression of BDNF.  相似文献   

3.

Background

Sleep plays a pivotal role in normal biological functions. Sleep loss results in higher stress vulnerability and is often found in mental disorders. There is evidence that brain-derived neurotrophic factor (BDNF) could be a central player in this relationship. Recently, we could demonstrate that subjects suffering from current symptoms of insomnia exhibited significantly decreased serum BDNF levels compared with sleep-healthy controls. In accordance with the paradigm indicating a link between sleep and BDNF, we aimed to investigate if the stress system influences the association between sleep and BDNF.

Methodology/Principal Findings

Participants with current symptoms of insomnia plus a former diagnosis of Restless Legs Syndrome (RLS) and/or Periodic Limb Movement (PLM) and sleep healthy controls were included in the study. They completed questionnaires on sleep (ISI, Insomnia Severity Index) and stress (PSS, Perceived Stress Scale) and provided a blood sample for determination of serum BDNF. We found a significant interaction between stress and insomnia with an impact on serum BDNF levels. Moreover, insomnia severity groups and score on the PSS each revealed a significant main effect on serum BDNF levels. Insomnia severity was associated with increased stress experience affecting serum BDNF levels. Of note, the association between stress and BDNF was only observed in subjects without insomnia. Using a mediation model, sleep was revealed as a mediator of the association between stress experience and serum BDNF levels.

Conclusions

This is the first study to show that the interplay between stress and sleep impacts BDNF levels, suggesting an important role of this relationship in the pathogenesis of stress-associated mental disorders. Hence, we suggest sleep as a key mediator at the connection between stress and BDNF. Whether sleep is maintained or disturbed might explain why some individuals are able to handle a certain stress load while others develop a mental disorder.  相似文献   

4.
Brain-derived neurotrophic factor (BDNF), a major neuronal growth factor, is also known to exert an antiapoptotic effect in myeloma cells. Whereas BDNF secretion was described in B lymphocytes, the ability of B cells to produce sortilin, its transport protein, was not previously reported. We studied BDNF production and the expression of its receptors, tyrosine protein kinase receptor B and p75 neurotrophin receptor in the human pre-B, mature, and plasmacytic malignant B cell lines under normal and stress culture conditions (serum deprivation, Fas activation, or their combination). BDNF secretion was enhanced by serum deprivation and exerted an antiapoptotic effect, as demonstrated by neutralization experiments with antagonistic Ab. The precursor form, pro-BDNF, also secreted by B cells, decreases under stress conditions in contrast to BDNF production. Stress conditions induced the membranous expression of p75 neurotrophin receptor and tyrosine protein kinase receptor B, maximal in mature B cells, contrasting with the sequestration of both receptors in normal culture. By blocking Ab and small interfering RNA, we evidenced that BDNF production and its survival function are depending on sortilin, a protein regulating neurotrophin transport in neurons, which was not previously described in B cells. Therefore, in mature B cell lines, an autocrine BDNF production is up-regulated by stress culture conditions and exerts a modulation of apoptosis through the sortilin pathway. This could be of importance to elucidate certain drug resistances of malignant B cells. In addition, primary B lymphocytes contained sortilin and produced BDNF after mitogenic activation, which suggests that sortilin and BDNF might be implicated in the survival and activation of normal B cells also.  相似文献   

5.
Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity.  相似文献   

6.
Brain-derived neurotrophic factor (BDNF) is involved in regulating the growth of ovarian follicles, maturation of the oocyte, and development of the early embryo through its receptor, tyrosine kinase receptor B (TrkB). However, it is still unclear as to how BDNF influences proliferation and steroidogenesis of bovine granulosa cells (GCs). In this paper, we confirmed that BDNF and TrkB were expressed in bovine GCs, and that proliferation and steroidogenesis by bovine GCs were reduced by knockdown of BDNF or inhibition of TrkB. With respect to GC proliferation, BDNF enhanced cellular viability and the percentage of cells in the S phase. BDNF also activated both protein kinase B (PKB, also known as AKT) and the extracellular signal-regulated protein kinase 1/2 (ERK1/2)-signaling pathway. Through the AKT-signaling pathway, BDNF increased the expression of proliferation-related genes, including cyclin A1 (CCNA1), cyclin E2 (CCNE2), cyclin D1 (CCND1), and cyclin-dependent kinase 1 (CDK1). However, through the ERK1/2 signaling pathway, BDNF only increased the expression of CCNA1 and CCNE2. Regarding steroidogenesis by bovine GCs, BDNF promoted progesterone (P 4) synthesis, but had no effect on estradiol; it also activated the AKT-signaling pathway and increased the expression of steroidogenesis-related genes, including steroidogenic acute regulatory protein (STAR) and hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 1 (HSD3B1). In summary, our data are the first to show that BDNF promotes the proliferation of bovine GCs through TrkB–AKT and ERK1/2 signaling pathways and increases P4 synthesis by bovine GCs through the TrkB–AKT signaling pathway.  相似文献   

7.
8.
Diabetes mellitus-accelerated atherosclerosis (DMAS) is one of the vascular complications of diabetes. Brain-derived neurotrophic factor (BDNF) plays a critical role in diabetes mellitus. However, the mechanism by which BDNF is involved in DMAS remains unknown. This study investigates the effect of BDNF on the progression of DMAS as well as the underlying mechanism of action. The levels of BDNF in serum and peripheral blood mononuclear cells (PBMCs) from patients with DMAS and health controls were measured as well as the expression of inflammatory cytokines (IL-1β, TNF-α, IL-10, TGF-β and IL-13). The effects of BDNF restoration on cytokine release, macrophage differentiation and the formation of atherosclerotic plaques were evaluated both in vitro and in vivo using the DMAS mouse model. Downregulation of BDNF was identified in the serum and PBMCs of patients with DMAS. Elevation of BDNF contributed to a reduction in the AS lesion area in low-density lipoprotein receptor−/− mice, inactivated the STAT3 pathway, decreased pro-inflammatory cytokines IL-1β and TNF-α, and increased IL-10, TGF-β and IL-13. BDNF overexpression also increased the proportion of M2 macrophages and alleviated atherosclerotic lesions. Our findings demonstrate that BDNF overexpression promotes M2 macrophage polarization, which represses the development of DMAS by inactivating the STAT3 pathway.  相似文献   

9.
BackgroundHigh rates of co-morbidity have been reported in patients with diabetes mellitus with depression (DD). Danggui Buxue Decoction (DBD), a Traditional Chinese Medicine formula composed of Angelica and Astragalus, has been historically used for the treatment of diabetes.PurposeThis study aimed to investigated whether DBD and its main active component, ferulic acid (FA) from Angelica, could ameliorate depression-like behavior in DD and the underlying mechanisms.MethodsGoto-Kakizaki (GK) rats were administered DBD (4 or 8 g/kg) by oral gavage during a 4-week period of chronic unpredictable mild stress. After 4 weeks, blood glucose, glycated serum protein, serum insulin, oral glucose tolerance and depression-like behavior were examined, along with brain-derived neurotrophic factor (BDNF)-related signaling pathway proteins and the ultrastructure of hippocampal tissues. UPLC-QTOF-MS was adopted to detect the absorption of FA in the serum and hippocampus. Rat primary hippocampal cells were cultured in a DD model. Protein and mRNA levels of genes involved in BDNF-related signaling and neuroplasticity were analyzed.ResultsDBD effectively improved glucose tolerance in DD rats and relieved depression-like behavior. Upregulation of cAMP response element binding protein (CREB), BDNF, and tropomyosin receptor kinase B (TrkB) and improvement of the hippocampal neuron ultrastructure supported the antidepressant-Like effects of DBD on the hippocampal neurons. In addition, DBD enhanced the protein and mRNA levels of components of the CREB/BDNF/TrkB pathway in rat primary hippocampal cells induced by elevated glycemia and cortisol. Interestingly, FA, the main component of DBD absorbed in the blood and hippocampus, showed similar effects as DBD on primary hippocampal cells.Conclusion:This study suggests that the TCM formula DBD effectively serves as a potential therapeutic agent for prevention of DD through regulatory effects on the CREB/BDNF/TrkB pathway to protect and remodel hippocampal neurons. Moreover, FA contributes significantly to the treatment effects of DBD.  相似文献   

10.

Background

Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary.

Methods

Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated.

Results

Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment.

Conclusion

BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.  相似文献   

11.

Objectives

Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal survival and differentiation; however, the effects of BDNF on mood disorders remain unclear. We investigated BDNF from the perspective of various aspects of systems biology, including its molecular evolution, genomic studies, protein functions, and pathway analysis.

Methods

We conducted analyses examining sequences, multiple alignments, phylogenetic trees and positive selection across 12 species and several human populations. We summarized the results of previous genomic and functional studies of pro-BDNF and mature-BDNF (m-BDNF) found in a literature review. We identified proteins that interact with BDNF and performed pathway-based analysis using large genome-wide association (GWA) datasets obtained for mood disorders.

Results

BDNF is encoded by a highly conserved gene. The chordate BDNF genes exhibit an average of 75% identity with the human gene, while vertebrate orthologues are 85.9%-100% identical to human BDNF. No signs of recent positive selection were found. Associations between BDNF and mood disorders were not significant in most of the genomic studies (e.g., linkage, association, gene expression, GWA), while relationships between serum/plasma BDNF level and mood disorders were consistently reported. Pro-BDNF is important in the response to stress; the literature review suggests the necessity of studying both pro- and m-BDNF with regard to mood disorders. In addition to conventional pathway analysis, we further considered proteins that interact with BDNF (I-Genes) and identified several biological pathways involved with BDNF or I-Genes to be significantly associated with mood disorders.

Conclusions

Systematically examining the features and biological pathways of BDNF may provide opportunities to deepen our understanding of the mechanisms underlying mood disorders.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) is considered as a putative therapeutic agent against stroke. Since BDNF role on oxidative stress is uncertain, we have studied this role in a rat brain slice ischemia model, which allows BDNF reaching the neural parenchyma. Hippocampal and cerebral cortex slices were subjected to oxygen and glucose deprivation (OGD) and then returned to normoxic conditions (reperfusion-like, RL). OGD/RL increased a number of parameters mirroring oxidative stress in the hippocampus that were reduced by the BDNF presence. BDNF also reduced the OGD/RL-increased activity in a number of antioxidant enzymes in the hippocampus but no effects were observed in the cerebral cortex. In general, we conclude that alleviation of oxidative stress by BDNF in OGD/RL-exposed slices relies on decreasing cPLA2 activity, rather than modifying antioxidant enzyme activities. Moreover, a role for the oxidative stress in the differential ischemic vulnerability of cerebral cortex and hippocampus is also supported.  相似文献   

13.
Expression of tyrosine receptor kinase B (TrkB), a receptor for brain‐derived neurotrophic factor (BDNF), is markedly elevated in the adrenal medulla during immobilization stress. Catecholamine release was confirmed in vitro by stimulating chromaffin cells with recombinant BDNF. We investigated the role of TrkB and the localization of BDNF in the adrenal gland during immobilization stress for 60 min. Blood catecholamine levels increased after stimulation with TrkB expressed in the adrenal medulla during 60‐min stress; however, blood catecholamine levels did not increase in adrenalectomized rats. Furthermore, expression of BDNF mRNA and protein was detected in the adrenal medulla during 60‐min stress. Similarly, in rats undergoing sympathetic nerve block with propranolol, BDNF mRNA and protein were detected in the adrenal medulla during 60‐min stress. These results suggest that signal transduction of TrkB in the adrenal medulla evokes catecholamine release. In addition, catecholamine release was evoked by both the hypothalamic–pituitary–adrenal axis and autocrine signaling by BDNF in the adrenal gland. BDNF–TrkB interaction may play a role in a positive feedback loop in the adrenal medulla during immobilization stress.  相似文献   

14.
Brain-derived neurotrophic factor (BDNF) has been reported to play an important role in neuronal plasticity. In this study, we examined the effect of BDNF on an activity-dependent synaptic function in an acute phase. First, we found that short-term treatment (10 min) with BDNF enhanced depolarization-evoked glutamate release in cultured cortical neurons. The enhancement diminished gradually according to the length of BDNF treatment. The BDNF-enhanced release did not require the synthesis of protein and mRNA. Both tetanus toxin and bafilomycin abolished the depolarization-evoked glutamate release with or without BDNF, indicating that BDNF acted via an exocytotic pathway. Next, we investigated the effect of BDNF on intracellular Ca(2+). BDNF potentiated the increase in intracellular Ca(2+) induced by depolarization. The Ca(2+) was derived from intracellular stores, because thapsigargin completely inhibited the potentiation. Furthermore, both thapsigargin and xestospongin C inhibited the effect of BDNF. These results suggested that the release of Ca(2+) from intracellular stores mediated by the IP(3) receptor was involved in the BDNF-enhanced glutamate release. Last, it was revealed that the enhancement of glutamate release by BDNF was dependent on the TrkB-PLC-gamma pathway. These results clearly demonstrate that short-term treatment with BDNF enhances an exocytotic pathway by potentiating the accumulation of intracellular Ca(2+) through intracellular stores.  相似文献   

15.
Expression of brain-derived neurotrophic factor (BDNF) is sensitive to changes in oxygen availability, suggesting that BDNF may be involved in adaptive responses to oxidative stress. However, it is unknown whether or not oxidative stress actually increases availability of BDNF by stimulating BDNF secretion. To approach this issue we examined BDNF release from PC12 cells, a well-established model of neurosecretion, in response to hypoxic stimuli. BDNF secretion from neuronally differentiated PC12 cells was strongly stimulated by exposure to intermittent hypoxia (IH). This response was inhibited by N-acetyl-l-cysteine, a potent scavenger of reactive oxygen species (ROS) and mimicked by exogenous ROS. IH-induced BDNF release requires activation of tetrodotoxin sensitive Na+ channels and Ca2+ influx through N- and L-type channels, as well as mobilization of internal Ca2+ stores. These results demonstrate that oxidative stress can stimulate BDNF release and that underlying mechanisms are similar to those previously described for activity-dependent BDNF secretion from neurons. Surprisingly, we also found that IH-induced secretion of BDNF was blocked by dopamine D2 receptor antagonists or by inhibition of dopamine synthesis with alpha-methyl-p-tyrosine. These data indicate that oxidative stress can stimulate BDNF release through an autocrine or paracrine loop that requires dopamine receptor activation.  相似文献   

16.
Inhibition of stress-induced elevations in brain-derived neurotrophic factor (BDNF) or its primary receptor tyrosine-related kinase B (TrkB) within the reward pathway may modulate vulnerability to anxiety and mood disorders. The current study examined the role of BDNF/TrkB signaling on biochemistry and behavior under basal conditions and following exposure to a 10-day heterotypic stress paradigm in male rats. Effects of intra-accumbal administration of TrkB antagonist ANA-12 (0.25 μg/0.5 μl/min) on anxiety, and expression of Trk-B, corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2) and glucocorticoid receptor (GR) within the mesolimbic pathway were determined. Notably, ANA-12 attenuated anxiety-like behavior in stress rats while increasing anxiety in the non-stress group in the elevated plus maze (EPM). At the neurochemical level, ANA-12 blocked the increased vGluT2 and CRH expressions in the hypothalamic PVN and basolateral amygdala in stress rats, while it enhanced vGluT2 and CRH expressions in non-stress rats. ANA-12 also showed state-dependent effects at the NAc core, attenuating TrkB-ir in non-stress rats while reversing reduced expression in stressed rats. At the cingulate cortex, ANA-12 normalized stress-induced increase in TrkB expression. Notably, ANA-12 showed region-specific effects on GR-ir at the NAc core and shell, with increased GR-ir in non-stress rats, although the drug attenuated stress-induced GR-ir expression only in the core portion of the NAc, while having no impact at the cingulate cortex. Elevated blood CORT levels post-stress was not influenced by ANA-12 treatment. Together, these findings suggest that BDNF-mediated TrkB activation exerts differential impact in regulating emotional response under basal and stress conditions.  相似文献   

17.
BDNF-TrkB信号通路对情绪产生、认知功能和记忆能力都有重要的影响,主要通过PI3-K途径和Ras-MAP激酶途径调节神经元的再生、凋亡及重建。近年来的研究表明,BDNF基因型及其表达量和TrkB受体表达的异常与焦虑障碍的产生有非常密切的关系。本文综述了近年来BDNF-TrkB信号通路及其与焦虑障碍产生的联系等方面的研究进展。  相似文献   

18.
An emerging body of data suggests that the early onset of Alzheimer’s disease (AD) is associated with decreased brain-derived neurotrophic factor (BDNF). Because BDNF plays a critical role in the regulation of high-frequency synaptic transmission and long-term potentiation in the hippocampus, the up-regulation of BDNF may rescue cognitive impairments and learning deficits in AD. In the present study, we investigated the effects of hippocampal BDNF in a rat model of AD produced by a ventricle injection of amyloid-β1-42 (Aβ1-42). We found that a ventricle injection of Aβ1-42 caused learning deficits in rats subjected to the Morris water maze and decreased BDNF expression in the hippocampus. Chronic intra-hippocampal BDNF administration rescued learning deficits in the water maze, whereas infusions of NGF and NT-3 did not influence the behavioral performance of rats injected with Aβ1-42. Furthermore, the BDNF-related improvement in learning was ERK-dependent because the inhibition of ERK, but not JNK or p38, blocked the effects of BDNF on cognitive improvement in rats injected with Aβ1-42. Together, our data suggest that the up-regulation of BDNF in the hippocampus via activation of the ERK signaling pathway can ameliorate Aβ1-42-induced learning deficits, thus identifying a novel pathway through which BDNF protects against AD-related cognitive impairments. The results of this research may shed light on a feasible therapeutic approach to control the progression of AD.  相似文献   

19.
As a member of neurotrophin family, brain derived neurotrophic factor (BDNF) plays critical roles in neuronal development, differentiation, synaptogenesis, and neural protection from the harmful stimuli. There have been reported that adenosine A2(A) receptor subtype is widely distributed in the brain regions, such as hippocampus, striatum, and cortex. Adenosine A2(A) receptor is colocalized with BDNF in brain regions and the functional interaction between A2(A) receptor stimulation and BDNF action has been suggested. In this study, we investigated the possibility that the activation of A2(A) receptor modulates BDNF production in rat primary cortical neuron. CGS21680, an adenosine A2(A) receptor agonist, induced BDNF expression and release. An antagonist against A2(A) receptor, ZM241385, prevented CGS21680-induced increase in BDNF production. A2(A) receptor stimulation induced the activation of Akt-GSK-3β signaling pathway and the blockade of the signaling pathway with specific inhibitors abolished the increase in BDNF production, possibly via modulation of ERK1/2-CREB pathway. The physiological roles of A2(A) receptor-induced BDNF production was demonstrated by the protection of neurons from the excitotoxicity and increased neurite extension as well as synapse formation from immature and mature neurons. Taken together, activation of A2(A) receptor regulates BDNF production in rat cortical neuron, which provides neuro-protective action.  相似文献   

20.
It was recently discovered that ketamine can relieve depression in a matter of hours through an action on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This is much more rapid than the several weeks required for the available antidepressants to show therapeutic efficacy. However, ketamine has negative side effects. The aim of this study was to determine whether the natural prokinetic drug meranzin hydrate (MH) has a fast-acting antidepressant effect mediated by AMPA receptors. By means of in vivo and in vitro experiments, we found that (1) treatment of rats with MH at 9 mg/kg decreased immobility time in a forced swimming test (FST), as did the popular antidepressant fluoxetine and the AMPA receptor positive modulator aniracetam. Pretreatment of rats with NBQX (10 mg/kg), an antagonist of AMPA receptors, blocked this effect of MH. (2) MH increased number of crossings of forced swimming rats in the open field test. (3) FST enhanced hippocampal ERK1/2, p-ERK1/2 and BDNF expression levels. MH (9 mg/kg) treatment further up-regulated hippocampal p-ERK1/2 and BDNF expression levels, and this effect was prevented by NBQX. (4) MH-increased BDNF expression corresponded with MH-decreased immobility time in the FST. (5) In vitro experiments, we found that incubation of rats hippocampus slices with MH (10, 20 μM respectively) increased concentrations of BDNF and p-ERK1/2. This effect of MH (20 μM) were prevented by NBQX. In conclusion, in animals subjected to acute stress, the natural prokinetic drug MH produced a rapid effect mediated by AMPA receptors and involving BDNF modulation through the ERK1/2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号