首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In the present study, we examined signal transduction mechanism of reactive oxygen species (ROS) production and the role of ROS in angiotensin II-induced activation of mitogen-activated protein kinases (MAPKs) in rat neonatal cardiomyocytes. Among three MAPKs, c-Jun NH(2)-terminal kinase (JNK) and p38 MAPK required ROS production for activation, as an NADPH oxidase inhibitor, diphenyleneiodonium, inhibited the activation. The angiotensin II-induced activation of JNK and p38 MAPK was also inhibited by the expression of the Galpha(12/13)-specific regulator of G protein signaling (RGS) domain, a specific inhibitor of Galpha(12/13), but not by an RGS domain specific for Galpha(q). Constitutively active Galpha(12)- or Galpha(13)-induced activation of JNK and p38 MAPK, but not extracellular signal-regulated kinase (ERK), was inhibited by diphenyleneiodonium. Angiotensin II receptor stimulation rapidly activated Galpha(13), which was completely inhibited by the Galpha(12/13)-specific RGS domain. Furthermore, the Galpha(12/13)-specific but not the Galpha(q)-specific RGS domain inhibited angiotensin II-induced ROS production. Dominant negative Rac inhibited angiotensin II-stimulated ROS production, JNK activation, and p38 MAPK activation but did not affect ERK activation. Rac activation was mediated by Rho and Rho kinase, because Rac activation was inhibited by C3 toxin and a Rho kinase inhibitor, Y27632. Furthermore, angiotensin II-induced Rho activation was inhibited by Galpha(12/13)-specific RGS domain but not dominant negative Rac. An inhibitor of epidermal growth factor receptor kinase AG1478 did not affect angiotensin II-induced JNK activation cascade. These results suggest that Galpha(12/13)-mediated ROS production through Rho and Rac is essential for JNK and p38 MAPK activation.  相似文献   

2.
To examine the role of mitogen-activated protein kinase and nuclear factor kappa B (NF-kappaB) pathways on osteoclast survival and activation, we constructed adenovirus vectors carrying various mutants of signaling molecules: dominant negative Ras (Ras(DN)), constitutively active MEK1 (MEK(CA)), dominant negative IkappaB kinase 2 (IKK(DN)), and constitutively active IKK2 (IKK(CA)). Inhibiting ERK activity by Ras(DN) overexpression rapidly induced the apoptosis of osteoclast-like cells (OCLs) formed in vitro, whereas ERK activation after the introduction of MEK(CA) remarkably lengthened their survival by preventing spontaneous apoptosis. Neither inhibition nor activation of ERK affected the bone-resorbing activity of OCLs. Inhibition of NF-kappaB pathway with IKK(DN) virus suppressed the pit-forming activity of OCLs and NF-kappaB activation by IKK(CA) expression upregulated it without affecting their survival. Interleukin 1alpha (IL-1alpha) strongly induced ERK activation as well as NF-kappaB activation. Ras(DN) virus partially inhibited ERK activation, and OCL survival promoted by IL-1alpha. Inhibiting NF-kappaB activation by IKK(DN) virus significantly suppressed the pit-forming activity enhanced by IL-1alpha. These results indicate that ERK and NF-kappaB regulate different aspects of osteoclast activation: ERK is responsible for osteoclast survival, whereas NF-kappaB regulates osteoclast activation for bone resorption.  相似文献   

3.
Recent work has suggested a role for the serine/threonine kinase Akt and IkappaB kinases (IKKs) in nuclear factor (NF)-kappaB activation. In this study, the involvement of these components in NF-kappaB activation through a G protein-coupled pathway was examined using transfected HeLa cells that express the B2-type bradykinin (BK) receptor. The function of IKK2, and to a lesser extent, IKK1, was suggested by BK-induced activation of their kinase activities and by the ability of their dominant negative mutants to inhibit BK-induced NF-kappaB activation. BK-induced NF-kappaB activation and IKK2 activity were markedly inhibited by RGS3T, a regulator of G protein signaling that inhibits Galpha(q), and by two Gbetagamma scavengers. Co-expression of Galpha(q) potentiated BK-induced NF-kappaB activation, whereas co-expression of either an activated Galpha(q)(Q209L) or Gbeta(1)gamma(2) induced IKK2 activity and NF-kappaB activation without BK stimulation. BK-induced NF-kappaB activation was partially blocked by LY294002 and by a dominant negative mutant of phosphoinositide 3-kinase (PI3K), suggesting that PI3K is a downstream effector of Galpha(q) and Gbeta(1)gamma(2) for NF-kappaB activation. Furthermore, BK could activate the PI3K downstream kinase Akt, whereas a catalytically inactive mutant of Akt inhibited BK-induced NF-kappaB activation. Taken together, these findings suggest that BK utilizes a signaling pathway that involves Galpha(q), Gbeta(1)gamma(2), PI3K, Akt, and IKK for NF-kappaB activation.  相似文献   

4.
5.
Oxidative stress induced by cell treatments with H(2)O(2) activates protein kinase D (PKD) via a protein kinase C (PKC)-dependent signal transduction pathway (Waldron, R. T., and Rozengurt, E. (2000) J. Biol. Chem. 275, 17114-17121). Here we show that oxidative stress induces PKC-dependent activation loop Ser(744) and Ser(748) phosphorylation to mediate dose- and time-dependent activation of PKD, both endogenously expressed in Swiss 3T3 cells and stably overexpressed in Swiss 3T3-GFP.PKD cells. Although oxidative stress induced PKD activation loop phosphorylation and activation with identical kinetics, both were dose-dependently blocked by preincubation of cells with selective inhibitors of PKC (GF109203X and G?6983) or c-Src (PP2). Inhibition of Src tyrosine kinase activity eliminated oxidative stress-induced direct PKD tyrosine phosphorylation, but only partially attenuated activation loop phosphorylation and activation. Mutation of a putative tyrosine phosphorylation site on PKD, Tyr(469) to phenylalanine, had no effect on its activation by oxidative stress in transfected COS-7 cells. Similarly, a mutant with Tyr(469) replaced by aspartic acid had increased basal activity but was also further activated by oxidative stress. Thus, PKD tyrosine phosphorylation at this site neither produced full activation by itself nor was required for oxidative stress-induced activation mediated by activation loop phosphorylation. In addition to PKD activation, activation loop phosphorylation in response to oxidative stress also redistributed activated PKD to cell nuclei, as revealed by PKD indirect immunofluorescence, imaging of a PKD-green fluorescent protein fusion construct (GFP-PKD), and analysis of nuclear pellets. Cell preincubation with G?6983 strongly diminished H(2)O(2)-induced nuclear relocalization of GFP-PKD. Taken together, these results indicate that PKC-mediated PKD Ser(744) and Ser(748) phosphorylation induced by oxidative stress integrates PKD activation with redistribution to the nucleus.  相似文献   

6.
Prourokinase-induced plasminogen activation is complex and involves three distinct reactions: (1) plasminogen activation by the intrinsic activity of prourokinase; (2) prourokinase activation by plasmin; (3) plasminogen activation by urokinase. To further understand some of the mechanisms involved, the effects of epsilon-aminocaproic acid (EACA), a lysine analogue, on these reactions were studied. At a low range of concentrations (10-50 microM), EACA significantly inhibited prourokinase-induced (Glu-/Lys-) plasminogen activation, prourokinase activation by Lys-plasmin, and (Glu-/Lys-) plasminogen activation by urokinase. However, no inhibition of plasminogen activation by Ala158-prourokinase (a plasmin-resistant mutant) occurred. Therefore, the overall inhibition of EACA on prourokinase-induced plasminogen activation was mainly due to inhibition of reactions 2 and 3, by blocking the high-affinity lysine binding interaction between plasmin and prourokinase, as well as between plasminogen and urokinase. These findings were consistent with kinetic studies which suggested that binding of kringle 1-4 of plasmin to the N-terminal region of prourokinase significantly promotes prourokinase activation, and that binding of kringle 1-4 of plasminogen to the C-terminal lysine158 of urokinase significantly promotes plasminogen activation. In conclusion, EACA was found to inhibit, rather than promote, prourokinase-induced plasminogen activation due to its blocking of the high-affinity lysine binding sites on plasmin(ogen).  相似文献   

7.
We reported previously that freshly fractured silica (FFSi) induces activator protein-1 (AP-1) activation through extracellular signal-regulated protein kinases (ERKs) and p38 kinase pathways. In the present study, the biologic activities of FFSi and aged silica (ASi) were compared by measuring their effects on the AP-1 activation and phosphorylation of ERKs and p38 kinase. The roles of reactive oxygen species (ROS) in this silica-induced AP-1 activation were also investigated. We found that FFSi-induced AP-1 activation was four times higher than that of ASi in JB6 cells. FFSi also caused greater phosphorylation of ERKs and p38 kinase than ASi. FFSi generated more ROS than ASi when incubated with the cells as measured by electron spin resonance (ESR). Studies using ROS-sensitive dyes and oxygen consumption support the conclusion that ROS are generated by silica-treated cells. N-Acetylcysteine (an antioxidant) and polyvinyl pyridine-N-oxide (an agent that binds to Si-OH groups on silica surfaces) decreased AP-1 activation and phosphorylation of ERKs and p38 kinase. Catalase inhibited phosphorylation of ERKs and p38 kinase, as well as AP-1 activation induced by FFSi, suggesting the involvement of H(2)O(2) in the mechanism of silica-induced AP-1 activation. Sodium formate (an ( small middle dot)OH scavenger) had no influence on silica-induced MAPKs or AP-1 activation. Superoxide dismutase enhanced both AP-1 and MAPKs activation, indicating that H(2)O(2), but not O(2), may play a critical role in silica-induced AP-1 activation. These studies indicate that freshly ground silica is more biologically active than aged silica and that ROS, in particular H(2)O(2), play a significant role in silica-induced AP-1 activation.  相似文献   

8.
c-Jun NH(2)-terminal kinase (JNK) is activated by a number of cellular stimuli such as inflammatory cytokines and environmental stresses. Reactive oxygen species also cause activation of JNK; however, the signaling cascade that leads to JNK activation remains to be elucidated. Because recent reports showed that expression of Cas, a putative Src substrate, stimulates JNK activation, we hypothesized that the Src kinase family and Cas would be involved in JNK activation by reactive oxygen species. An essential role for both Src and Cas was demonstrated. First, the specific Src family tyrosine kinase inhibitor, PP2, inhibited JNK activation by H(2)O(2) in a concentration-dependent manner but had no effect on extracellular signal-regulated kinases 1 and 2 and p38 activation. Second, JNK activation in response to H(2)O(2) was completely inhibited in cells derived from transgenic mice deficient in Src but not Fyn. Third, expression of a dominant negative mutant of Cas prevented H(2)O(2)-mediated JNK activation but had no effect on extracellular signal-regulated kinases 1 and 2 and p38 activation. Finally, the importance of Src was further supported by the inhibition of both H(2)O(2)-mediated Cas tyrosine phosphorylation and Cas.Crk complex formation in Src-/- but not Fyn-/- cells. These results demonstrate an essential role for Src and Cas in H(2)O(2)-mediated activation of JNK and suggest a new redox-sensitive pathway for JNK activation mediated by Src.  相似文献   

9.
Fasting or starvation of 1(st)- and 2(nd)-day fifth instar Manduca sexta larvae leads to rapid activation of fat body glycogen phosphorylase. Under feeding conditions, 21-29% of the phosphorylase was found in the active form. However, after only one hour of starvation, the active form increased to 55-65%. In larvae on the 3(rd)-day there was a slower increase in the activation, requiring three hours of starvation to reach a maximum of 60-65%. No activation was observed in 4(th)-day larvae after three hours of starvation. When 1(st)- or 2(nd)-day larvae were decapitated, the time-course of activation of glycogen phosphorylase was very similar to that observed in intact insects. However, activation of glycogen phosphorylase following decapitation was only observed in 1(st)- and 2(nd)-day larvae. In 2(nd)-day larvae, octopamine promoted activation of glycogen phosphorylase and 100-pmol of octopamine promoted maximum activation. Higher amounts of injected octopamine caused a decrease in activation. The injection of 100 pmol of octopamine caused a 50-55% activation of phosphorylase within 30 minutes. The simultaneous injection of the alpha-adrenergic receptor antagonist phentolamine with octopamine blocked the octopamine effect in 1(st)- and 2(nd)-day feeding larvae. However, the activation of glycogen phosphorylase observed in ligated/decapitated larvae on the 1(st)- and 2(nd)-day was not abolished by injection of phentolamine. All of these data suggest that factors other than adipokinetic hormone and octopamine may be involved in the activation of glycogen phosphorylase during fasting or starvation in the early part of the fifth larval stage of M. sexta.  相似文献   

10.
We examined the signaling pathways regulating glycogen synthase (GS) in primary cultures of rat hepatocytes. The activation of GS by insulin and glucose was completely reversed by the phosphatidylinositol 3-kinase inhibitor wortmannin. Wortmannin also inhibited insulin-induced phosphorylation and activation of protein kinase B/Akt (PKB/Akt) as well as insulin-induced inactivation of GS kinase-3 (GSK-3), consistent with a role for the phosphatidylinositol 3-kinase/PKB-Akt/GSK-3 axis in insulin-induced GS activation. Although wortmannin completely inhibited the significantly greater level of GS activation produced by the insulin-mimetic bisperoxovanadium 1,10-phenanthroline (bpV(phen)), there was only minimal accompanying inhibition of bpV(phen)-induced phosphorylation and activation of PKB/Akt, and inactivation of GSK-3. Thus, PKB/Akt activation and GSK-3 inactivation may be necessary but are not sufficient to induce GS activation in rat hepatocytes. Rapamycin partially inhibited the GS activation induced by bpV(phen) but not that effected by insulin. Both insulin- and bpV(phen)-induced activation of the atypical protein kinase C (zeta/lambda) (PKC (zeta/lambda)) was reversed by wortmannin. Inhibition of PKC (zeta/lambda) with a pseudosubstrate peptide had no effect on GS activation by insulin, but substantially reversed GS activation by bpV(phen). The combination of this inhibitor with rapamycin produced an additive inhibitory effect on bpV(phen)-mediated GS activation. Taken together, our results indicate that the signaling components mammalian target of rapamycin and PKC (zeta/lambda) as well as other yet to be defined effector(s) contribute to the modulation of GS in rat hepatocytes.  相似文献   

11.
Intra-acinar cell nuclear factor-kappaB (NF-kappaB) and trypsinogen activation are early events in secretagogue-induced acute pancreatitis. We have studied the relationship between NF-kappaB and trypsinogen activation in rat pancreas. CCK analogue caerulein induces early (within 15 min) parallel activation of both NF-kappaB and trypsinogen in pancreas in vivo as well as in pancreatic acini in vitro. However, NF-kappaB activation can be induced without trypsinogen activation by lipopolysaccharide in pancreas in vivo and by phorbol ester in pancreatic acini in vitro. Stimulation of acini with caerulein after 6 h of culture results in NF-kappaB but not trypsinogen activation. Protease inhibitors (AEBSF, TLCK, and E64d) inhibit both intracellular trypsin activity and NF-kappaB activation in caerulein stimulated acini. A chymotrypsin inhibitor (TPCK) inhibits NF-kappaB activation but not trypsin activity. The proteasome inhibitor MG-132 prevents caerulein-induced NF-kappaB activation but does not prevent trypsinogen activation. These findings indicate that although caerulein-induced NF-kappaB and trypsinogen activation are temporally closely related, they are independent events in pancreatic acinar cells. NF-kappaB activation per se is not required for the development of early acinar cell injury by supramaximal secretagogue stimulation.  相似文献   

12.
Caspase 8 is required not only for death receptor-mediated apoptosis but also for lymphocyte activation in the immune system. FLIP(L), the long-splice form of c-FLIP, is one of the specific substrates for caspase 8, and increased expression of FLIP(L) promotes activation of the NF-kappaB signaling pathway. The synthetic caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) markedly blocked NF-kappaB activation induced by overexpression of FLIP(L). FLIP(L) is specifically processed by caspase 8 into N-terminal FLIP(p43) and C-terminal FLIP(p12). Only FLIP(p43) was able to induce NF-kappaB activation as efficiently as FLIP(L), and FLIP(p43)-induced NF-kappaB activation became insensitive to zVAD-fmk. In caspase 8-deficient cells, FLIP(p43) provoked NF-kappaB activation only when procaspase 8 or caspase 8(p43) was complemented. FLIP(p43)-induced NF-kappaB activation was profoundly blocked by the dominant-negative TRAF2. Moreover, endogenous TRAF2 interacted specifically with FLIP(p43), and the formation of the FLIP(p43)-caspase 8-TRAF2 tertiary complex was a prerequisite to induction of NF-kappaB activation. zVAD-fmk prevented the recruitment of TRAF2 into the death-inducing signaling complex. Thus, our present results demonstrate that FLIP(p43) processed by caspase 8 specifically interacts with TRAF2 and subsequently induces activation of the NF-kappaB signaling pathway.  相似文献   

13.
14.
M H Lee  R M Bell 《Biochemistry》1991,30(4):1041-1049
The mechanism of protein kinase C (PKC) activation by phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol (PI) was investigated by using Triton X-100 mixed micellar methods. The activation of PKC by PIP2, for which maximal activity was 60% of that elicited by sn-1,2-diacyglycerol (DAG), was similar to activation by DAG in several respects: (1) activation by PIP2 and DAG required phosphatidylserine (PS) as a phospholipid cofactor, (2) PIP2 and DAG reduced the concentration of Ca2+ and PS required for activation, (3) the concentration dependences of activation by PIP2 and DAG depended on the concentration of PS, and (4) PIP2 and DAG complemented one another to achieve maximal activation. On the other hand, PIP2 activation of PKC differed from activation by DAG in several respects. With increasing concentrations of PIP2, (1) the optimal concentration of PS required was constant at 12 mol%, (2) the maximal activity at 12 mol% PS increased, and (3) the cooperativity for PS decreased. PIP2 did not inhibit [3H]phorbol 12,13-dibutyrate (PDBu) binding of PKC at saturating levels of PS; however, at subsaturating levels of PS, PIP2 enhanced [3H]PDBu binding by acting as a phospholipid cofactor. PIP did not function as an activator but served as a phospholipid cofactor in the presence of PS. While PIP2, PIP, and PI did not support DAG-dependent PKC activation as phospholipid cofactors, their presence reduced the amount of PS required for maximal activation to as low as 2 mol% from 8 mol%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Basic fibroblast growth factor (bFGF) induces cell death in cells of the Ewing's sarcoma family of tumors in vivo and in vitro. In this study we demonstrate that this is dependent on the rapid and sustained activation of p38(MAPK), in contrast to the transient activation of p38(MAPK) associated with bFGF-induced cell proliferation. Stem cell factor-induced survival of TC-32 cells was also associated with transient activation of p38(MAPK). Inhibition of p38(MAPK) by SB202190 and p38(MAPK) small interfering RNA reduces bFGF-induced death in TC-32 cells, consistent with the hypothesis that activation of p38(MAPK) is essential for induction of death by bFGF. This appears to be dependent on sustained activation of p38(MAPK), demonstrated by inhibition of bFGF-induced cell death following addition of SB202190 to TC-32 cells 5 min after exposure to bFGF (20 ng/ml) and activation of p38(MAPK). Prolonged activation of p38(MAPK) is accompanied by a rapid and sustained phosphorylation of Ras and ERK; inhibition of ERK phosphorylation using the MEK-1 inhibitor PD98059 rescued approximately 30% of cells from bFGF-induced death suggesting ERK plays a secondary role in the induction of death. This hypothesis is supported by observations in the A673 cell line; bFGF induced sustained activation of ERK and transient activation of p38(MAPK), which was not associated with cell death. These data demonstrate that sustained activation of p38(MAPK) is essential for activation of the death cascade following exposure of Ewing's sarcoma family of tumors cells to bFGF and provide evidence that activation of p38(MAPK) results in an up-regulation of the death receptor p75(NTR).  相似文献   

17.
Activation of ERK-1 and -2 by H(2)O(2) in a variety of cell types requires epidermal growth factor receptor (EGFR) phosphorylation. In this study, we investigated the activation of ERK by ONOO(-) in cultured rat lung myofibroblasts. Western blot analysis using anti-phospho-ERK antibodies along with an ERK kinase assay using the phosphorylated heat- and acid-stable protein (PHAS-1) substrate demonstrated that ERK activation peaked within 15 min after ONOO(-) treatment and was maximally activated with 100 micrometer ONOO(-). Activation of ERK by ONOO(-) and H(2)O(2) was blocked by the antioxidant N-acetyl-l-cysteine. Catalase blocked ERK activation by H(2)O(2), but not by ONOO(-), demonstrating that the effect of ONOO(-) was not due to the generation of H(2)O(2). Both H(2)O(2) and ONOO(-) induced phosphorylation of EGFR in Western blot experiments using an anti-phospho-EGFR antibody. However, the EGFR tyrosine kinase inhibitor AG1478 abolished ERK activation by H(2)O(2), but not by ONOO(-). Both H(2)O(2) and ONOO(-) activated Raf-1. However, the Raf inhibitor forskolin blocked ERK activation by H(2)O(2), but not by ONOO(-). The MEK inhibitor PD98059 inhibited ERK activation by both H(2)O(2) and ONOO(-). Moreover, ONOO(-) or H(2)O(2) caused a cytotoxic response of myofibroblasts that was prevented by preincubation with PD98059. In a cell-free kinase assay, ONOO(-) (but not H(2)O(2)) induced autophosphorylation and nitration of a glutathione S-transferase-MEK-1 fusion protein. Collectively, these data indicate that ONOO(-) activates EGFR and Raf-1, but these signaling intermediates are not required for ONOO(-)-induced ERK activation. However, MEK-1 activation is required for ONOO(-)-induced ERK activation in myofibroblasts. In contrast, H(2)O(2)-induced ERK activation is dependent on EGFR activation, which then leads to downstream Raf-1 and MEK-1 activation.  相似文献   

18.
Activation of mitogen-activated protein kinase (Erk/MAPK) is a critical signal transduction event for estrogen (E(2))-mediated cell proliferation. Recent studies from our group and others have shown that persistent activation of Erk plays a major role in cell migration and tumor progression. The signaling mechanism(s) responsible for persistent Erk activation are not fully characterized, however. In this study, we have shown that E(2) induces a slow but persistent activation of Erk in MCF-7 breast carcinoma cells. The E(2)-induced Erk activation is dependent on new protein synthesis, suggesting that E(2)-induced growth factors play a major role in Erk activation. When MCF-7 cells were treated with E(2) in the presence of an anti-HER-2 monoclonal antibody (herceptin), 60-70% of E(2)-induced Erk activation is blocked. In addition, when untreated MCF-7 cells were exposed to conditioned medium from E(2)-treated cells, Erk activity was significantly enhanced. Furthermore Erk activity was blocked by an antibody against HER-2 or by heregulin (HRG) depletion from the conditioned medium through immunoprecipitation. In contrast, epidermal growth factor receptor (Ab528) antibody only blocked 10-20% of E(2)-induced Erk activation, suggesting that E(2)-induced Erk activation is predominantly mediated through the secretion of HRG and activation of HER-2 by an autoctine/paracrine mechanism. Inhibition of PKC-delta-mediated signaling by a dominant negative mutant or the relatively specific PKC-delta inhibitor rottlerin blocked most of the E(2)-induced Erk activation but had no effect on TGF alpha-induced Erk activation. By contrast inhibition of Ras, by inhibition of farnesyl transferase (Ftase-1) or dominant negative (N17)-Ras, significantly inhibited both E(2)- and TGF alpha-induced Erk activation. This evaluation of downstream signaling revealed that E(2)-induced Erk activation is mediated by a HRG/HER-2/PKC-delta/Ras pathway that could be crucial for E(2)-dependent growth-promoting effects in early stages of tumor progression.  相似文献   

19.
The prostaglandin E(2) (PGE(2)) G protein-coupled receptor (GPCR), EP2, plays important roles in mouse skin tumor development (Chun, K. S., Lao, H. C., Trempus, C. S., Okada, M., and Langenbach, R. (2009) Carcinogenesis 30, 1620-1627). Because keratinocyte proliferation is essential for skin tumor development, EP2-mediated signaling pathways that contribute to keratinocyte proliferation were investigated. A single topical application of the EP2 agonist, butaprost, dose-dependently increased keratinocyte replication via activation of epidermal growth factor receptor (EGFR) and PKA signaling. Because GPCR-mediated activation of EGFR can involve the formation of a GPCR-β-arrestin-Src signaling complex, the possibility of a β-arrestin1-Src complex contributing to EP2-mediated signaling in keratinocytes was investigated. Butaprost induced β-arrestin1-Src complex formation and increased both Src and EGFR activation. A role for β-arrestin1 in EP2-mediated Src and EGFR activation was demonstrated by the observation that β-arrestin1 deficiency significantly reduced Src and EGFR activation. In agreement with a β-arrestin1-Src complex contributing to EGFR activation, Src and EGFR inhibition (PP2 and AG1478, respectively) indicated that Src was upstream of EGFR. Butaprost also induced the activation of Akt, ERK1/2, and STAT3, and both β-arrestin1 deficiency and EGFR inhibition (AG1478 or gefitinib) decreased their activation. In addition to β-arrestin1-dependent EGFR activation, butaprost increased PKA activation, as measured by phospho-GSK3β (p-GSK3β) and p-cAMP-response element-binding protein formation. PKA inhibition (H89 or R(P)-adenosine-3',5'-cyclic monophosphorothioate (R(P)-cAMPS)) decreased butaprost-induced cAMP-response element-binding protein and ERK activation but did not affect EGFR activation, whereas β-arrestin1 deficiency decreased EGFR activation but did not affect butaprost-induced PKA activation, thus indicating that they were independent EP2-mediated pathways. Therefore, the results indicate that EP2 contributed to mouse keratinocyte proliferation by G protein-independent, β-arrestin1-dependent activation of EGFR and G protein-dependent activation of PKA.  相似文献   

20.
It has been hypothesized that an interaction among adenosine A(1) receptors, protein kinase C (PKC) activation, and ATP-sensitive potassium channels (K(ATP)) mediates ischemic preconditioning in experiments on different animal species. The purpose of this study was to determine if activation of K(ATP) is functionally coupled to A(1) receptors and (or) PKC activation during metabolic inhibition (MI) in guinea pig ventricular myocytes. Perforated-patch using nystatin and conventional whole-cell recording methods were used to observe the effects of adenosine and adenosine-receptor antagonists on the activation of K(ATP) currents during MI induced by application of 2,4-dinitrophenol (DNP) and 2-deoxyglucose (2DG) without glucose, in the presence or absence of a PKC activator, phorbol 12-myristate 13-acetate (PMA). Adenosine accelerated the time course activation of K(ATP) currents during MI under the intact intracellular condition or dialyzed condition with l mmol/L ATP in the pipette solution. The accelerated effect of adenosine activation of K(ATP) under MI was not reversed by a nonselective Al adenosine receptor antagonist, 8-(p-sulfophenyl)theophylline (SPT), or a specific Al adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). However, the adenosine A(2) receptor antagonist alloxazine reversed the time course activation of the K(ATP) current under MI. An adenylate cyclase activator, forskolin, did not further abbreviate the time course activation of K(ATP) with or without adenosine. Application of a PKC blocker, chelerythrine, reversed the time course activation of K(ATP) by adenosine under MI. In addition, pretreatment with a PKC activator, PMA, had similar effects to adenosine, while adenosine did not further shorten the time required for activation of K(ATP) currents during MI with PMA pretreatment. There is no direct evidence of activation of K(ATP) currents by adenosine A(1) receptor during metabolic inhibition under our experimental condition. However, adenosine A(2) receptor activation is involved in the K(ATP) channel activation in the guinea pig ventricular myocytes, of which effect is not mediated through the increase in intracellular cAMP. Adenosine seems to interact with PKC activation to open K(ATP) during MI, but a possible link between the adenosine A(2) receptor and PKC activation in this process needs further elucidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号