首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Carbohydrate metabolism was studied in HT29 human colon cancer cells cultured in a glucose free medium supplemented with 2.8 mM inosine (HT29ino cells) in comparison with standard HT29 cells grown in the permanent presence of glucose (HT29Glc + cells) and with HT29Glc- cells which are adapted to grow permanently without glucose. 2. Inosine allows the standard cells to grow when glucose is lacking but surprisingly stops the growth of HT29Glc- cells. 3-mercaptopicolinate, an inhibitor of PEP-carboxykinase, does not hinder HT29ino cells to grow, which shows that gluconeogenesis from aspartate or pyruvate is not essential. It suggests that enough carbohydrate is supplied by the ribose moiety of inosine. 3. While standard HT29Glc + cells are highly glycolytic, it is not the case of HT29ino or HT29Glc- cells when glucose is given for few hours. When glucose is present for 24 hr or more, glycolytic rate increases in HT29ino cells and glycogen accumulates. 4. It is found that the pattern of enzymes activities related to carbohydrate metabolism in HT29ino cells is closer to that of HT29Glc + cells rather than to that of HT29Glc- cells. However, phosphofructokinase-1 activity, measured with saturating concentration of Fru-2,6-diP, is significantly lower in HT29ino cells. 5. Binding rate of hexokinase to mitochondria is similar in the three cell-lines. However, in HT29Glc- cells, bound hexokinase easily utilizes ATP generated by the mitochondria. By contrast, in HT29Glc+ and HT29ino cells, bound hexokinase is much more active with exogenous ATP, suggesting a functional defect in the mitochondria from these two latter cells.  相似文献   

2.
Previous work has indicated that two types (A and B) of binding sites for hexokinase exist, but in different proportions, on brain mitochondria from various species. Hexokinase is readily solubilized from Type A sites by glucose 6-phosphate (Glc-6-P), while hexokinase bound to Type B sites remains bound even in the presence of Glc-6-P. Type A:Type B ratios are approximately 90:10, 60:40, 40:60, and 20:80 for brain mitochondria from rat, rabbit, bovine and human brain, respectively. The present study has indicated that MgCl2-dependent partitioning of mitochondrially bound hexokinase into a hydrophobic (Triton X-114) phase is generally correlated with the proportion of Type B sites. This partitioning behavior is sensitive to phospholipase C, implying that the factor(s) responsible for conferring hydrophobic character is(are) phospholipid(s). Substantial differences were also seen in the resistance of hexokinase, bound to brain mitochondria from various species, to solubilization by Triton X-100, Triton X-114, or digitonin. This resistance increased with proportion of Type B sites. Enrichment of bovine brain mitochondria in acidic phospholipids (phosphatidylserine or phosphatidylinositol), but not phosphatidylcholine or phosphatidylethanolamine, substantially increased solubilization of the enzyme after incubation at 37 degrees C. Collectively, the results imply that the Type A and Type B sites are located in membrane domains of different lipid composition, the Type A sites being in domains enriched in acidic phospholipids which lead to greater susceptibility to solubilisation by Glc-6-P.  相似文献   

3.
The functional properties of mitochondria bound hexokinase are compared in two subpopulations of the HT29 human colon cancer cell-line: (1) the HT29 Glc+ cells, cultured in the presence of glucose, which are poorly differentiated and highly glycolytic and (2) the HT29 Glc- cells, adapted to grow in a glucose-free medium, which are 'enterocyte-like' differentiated and less glycolytic when given glucose (Zweibaum et al. (1985) J. Cell Physiol. 122, 21-28). The activities of hexokinase, phosphofructokinase-1 and pyruvate kinase are found to be twice as high in Glc+ cells when compared to Glc- cells. Besides, the respiration rate is decreased in Glc+ cells compared to Glc- cells. These results correlate with the higher glycolytic rate in Glc+ cells. In many tissues, it has been shown that the binding of hexokinase to the mitochondrial outer membrane allows a preferential utilization of the ATP generated by oxidative phosphorylation which, in turn, is activated by immediate restitution of ADP. In highly glycolytic cancer cells, although a large fraction of hexokinase is bound to the mitochondria, the existence of such a channeling of nucleotides is still poorly documented. The rates of glucose phosphorylation by bound hexokinase were investigated in mitochondria isolated from both Glc+ and Glc- cells either with exogenous ATP or with ATP generated by mitochondria supplied with ADP and succinate (endogenous ATP). Diadenosine pentaphosphate (Ado2P5), oligomycin and carboxyatractyloside (CAT) were used in combination or separately as metabolic inhibitors of adenylate kinase, ATP synthase and ATP/ADP translocator, respectively. Exogenous ATP appears to be 6.5-times more efficient than endogenous ATP in supporting hexokinase activity in the mitochondria from Glc+ cells and only 1.8-times cells. The rate of oxidative phosphorylation being higher in mitochondria from Glc- cells, hexokinase activity is higher in this model when ATP is generated by respiration. Furthermore, in Glc+ mitochondria, the adenylate kinase reaction appears to be an important source of endogenous ATP for bound hexokinase, while, in Glc- mitochondria, hexokinase activity is almost totally dependent on the ATP generated by oxidative phosphorylation. This result might be explained by our previous finding that mitochondria from Glc+ cells lack contact sites between outer and inner membrane, whereas numerous contacts were observed in mitochondria from Glc- cells (Denis-Pouxviel et al. (1987) Biochim. Biophys. Acta 902, 335-348).  相似文献   

4.
In rabbit heart, results show that two isoenzymes of hexokinase (HK) are present. The enzymatic activity associated with mitochondria consists of only one isoenzyme; according to its electrophoretic mobility and its apparent Km for glucose (0.065 mm), it has been identified as type I isoenzyme. The bound HK I exhibits a lower apparent Km for ATPMg than the solubilized enzyme, whereas the apparent Km for glucose is the same for bound and solubilized HK. Detailed studies have been performed to investigate the interactions which take place between the enzyme and the mitochondrial membrane. Neutral salts efficiently solubilize the bound enzyme. Digitonin induces only a partial release of the enzyme bound to mitochondria; this result could be explained by the existence of contacts between the outer and the inner mitochondrial membranes [C. R. Hackenbrock (1968)Proc. Natl. Acad. Sci. USA61, 598–605]. Furthermore, low concentrations (0.1 mm) of glucose 6-phosphate (G6P) or ATP4? specifically solubilize hexokinase. The solubilizing effect of G6P and ATP4?, which are potent inhibitors of the enzyme, can be prevented by incubation of mitochondria with Pi or Mg2+. In addition, enzyme solubilization by G6P can be reversed by Mg2+ only when the proteolytic treatment of the heart homogenate is omitted during the course of the isolation of mitochondria. These results concerning the interaction of rabbit heart hexokinase with the outer mitochondrial membrane agree with the schematic model proposed by Wilson [(1982) Biophys. J.37, 18–19] for the brain enzyme. This model involves the existence of two kinds of interactions between HK and mitochondria; a very specific one with the hexokinase-binding protein of the outer mitochondrial membrane, which is suppressed by glucose 6-phosphate, and a less specific, cation-mediated one.  相似文献   

5.
Hexokinase is released from Type A sites of brain mitochondria in the presence of glucose 6-phosphate (Glc-6-P); enzyme bound to Type B sites remains bound. Hexokinase of freshly isolated bovine brain mitochondria (Type A:Type B, approximately 40:60) selectively uses intramitochondrial ATP as substrate and is relatively insensitive to the competitive (vs ATP) inhibitor and Glc-6-P analog, 1,5-anhydroglucitol 6-phosphate (1,5-AnG-6-P). After removal of hexokinase bound at Type A sites, the remaining enzyme, bound at Type B sites, does not show selectivity for intramitochondrial ATP and has increased sensitivity to 1,5-AnG-6-P. Thus, the properties of the enzyme bound at Type B sites are modified by removal of hexokinase bound at Type A sites. It is suggested that mechanisms for regulation of mitochondrial hexokinase activity, and thereby cerebral glycolytic metabolism, may depend on the ratio of Type A:Type B sites, which varies in different species.  相似文献   

6.
Difference spectroscopic investigations on the interaction of brain hexokinase with glucose and glucose 6-phosphate (Glc-6-P) show that the binary complexes E-glucose and E-Glc-6-P give very similar UV difference spectra. However, the spectrum of the ternary E-glucose-Glc-6-P complex differs markedly from the spectra of the binary complexes, but resembles that produced by the E-glucose-Pi complex. Direct binding studies of the interaction of Glc-6-P with brain hexokinase detect only a single high-affinity binding site for Glc-6-P (KD = 2.8 microM). In the ternary E-glucose-Glc-6-P complex, Glc-6-P has a much higher affinity for the enzyme (KD = 0.9 microM) and a single binding site. Ribose 5-phosphate displaces Glc-6-P from E-glucose-Glc-6-P only, but not from E-Glc-6-P complex. It also fails to displace glucose from E-glucose and E-glucose-Glc-6-P complexes. Scatchard plots of the binding of glucose to brain hexokinase reveal only a single binding site but show distinct evidence of positive cooperativity, which is abolished by Glc-6-P and Pi. These ligands, as well as ribose 5-phosphate, substantially increase the binding affinity of glucose for the enzyme. The spectral evidence, as well as the interactive nature of the sites binding glucose and phosphate-bearing ligands, lead us to conclude that an allosteric site for Glc-6-P of physiological relevance occurs on the enzyme only in the presence of glucose, as a common locus where Glc-6-P, Pi, and ribose 5-phosphate bind. In the absence of glucose, Glc-6-P binds to the enzyme at its active site with high affinity. We also discuss the possibility that, in the absence of glucose, Glc-6-P may still bind to the allosteric site, but with very low affinity, as has been observed in studies on the reverse hexokinase reaction.  相似文献   

7.
The involvement of the mitochondrial bound hexokinase in aerobic glycolysis was investigated in two subpopulations of the HT 29 human colon cancer cell line: a poorly differentiated one with high aerobic lactate production (referred as undifferentiated or standard cells), and an enterocyte-like differentiated one with lower lactate production (referred as differentiated or Glc- cells). After mild digitonin treatment, 85% of the total cellular hexokinase activity remained in the particulate fraction in both cell types. In both cases mitochondria appeared to be tightly coupled but the Glc- cells exhibited a significantly higher oxidation rate in the presence of glucose. Electron microscopy of freeze-fractured cells revealed the absence of contacts between the two limiting mitochondrial membranes in the highly glycolytic standard cells, whereas the contacts were present in the Glc- cells. Furthermore, we investigated the functional relationship between bound hexokinase (as hexokinase-porin complex) and the inner compartment of mitochondria isolated from standard and Glc- HT 29 cells. In contrast to the differentiated cells the hexokinase in undifferentiated standard cells was not functionally coupled to the oxidative phosphorylation. This suggests that the high rate of lactate formation in neoplastic cells is not caused by an increase of particulate hexokinase activity but rather by a disregulation of the hexokinase-porin complex caused by the absence of contact sites between the two mitochondrial membranes. In agreement with this interpretation, the hexokinase-porin complex could be completely removed by digitonin treatment in standard HT 29 cells, while this was not possible in mitochondria from Glc- cells.  相似文献   

8.
Using adenovirus-mediated gene transfer into FTO-2B cells, a rat hepatoma cell line, we have overexpressed hexokinase I (HK I), glucokinase (GK), liver glycogen synthase (LGS), muscle glycogen synthase (MGS), and combinations of each of the two glucose-phosphorylating enzymes with each one of the GS isoforms. FTO-2B cells do not synthesize glycogen even when incubated with high doses of glucose. Adenovirus-induced overexpression of HK I and/or LGS, two enzymes endogenously expressed by these cells, did not produce a significant increase in the levels of active GS and the total glycogen content. In contrast, GK overexpression led to the glucose-dependent activation of endogenous or overexpressed LGS and to the accumulation of glycogen. Similarly overexpressed MGS was efficiently activated by the glucose-6-phosphate (Glc-6-P) produced by either endogenous or overexpressed HK I and by overexpressed GK. These results indicate the existence of at least two pools of Glc-6-P in the cell, one of them is accessible to both isoforms of GS and is replenished by the action of GK, whereas LGS is excluded from the cellular compartment where the Glc-6-P produced by HK I is directed. These findings are interpreted in terms of the metabolic role that the two pairs of enzymes, HK I-MGS in the muscle and GK-LGS in the hepatocyte, perform in their respective tissues.  相似文献   

9.
Traditionally, glycogen synthase (GS) has been considered to catalyze the key step of glycogen synthesis and to exercise most of the control over this metabolic pathway. However, recent advances have shown that other factors must be considered. Moreover, the control of glycogen deposition does not follow identical mechanisms in muscle and liver. Glucose must be phosphorylated to promote activation of GS. Glucose-6-phosphate (Glc-6-P) binds to GS, causing the allosteric activation of the enzyme probably through a conformational rearrangement that simultaneously converts it into a better substrate for protein phosphatases, which can then lead to the covalent activation of GS. The potency of Glc-6-P for activation of liver GS is determined by its source, since Glc-6-P arising from the catalytic action of glucokinase (GK) is much more effective in mediating the activation of the enzyme than the same metabolite produced by hexokinase I (HK I). As a result, hepatic glycogen deposition from glucose is subject to a system of control in which the 'controller', GS, is in turn controlled by GK. In contrast, in skeletal muscle, the control of glycogen synthesis is shared between glucose transport and GS. The characteristics of the two pairs of isoenzymes, liver GS/GK and muscle GS/HK I, and the relationships that they establish are tailored to suit specific metabolic roles of the tissues in which they are expressed. The key enzymes in glycogen metabolism change their intracellular localization in response to glucose. The changes in the intracellular distribution of liver GS and GK triggered by glucose correlate with stimulation of glycogen synthesis. The translocation of GS, which constitutes an additional mechanism of control, causes the orderly deposition of hepatic glycogen and probably represents a functional advantage in the metabolism of the polysaccharide.  相似文献   

10.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

11.
1. Oxygen consumption was investigated in two cultured subpopulations of either undifferentiated (Glc+ cells) or differentiated (Glc- cells) HT29 colon cancer cells and in the corresponding isolated mitochondria. In Glc+ cells, a decrease of the respiration is induced by the presence of glucose (Crabtree effect), whereas it is not the case in Glc- cells. 2. The oxidative phosphorylation rate of Glc- mitochondria is found to be much higher than that of Glc+ mitochondria, due to a higher efficiency to oxidize glutamine, glutamate, 2-oxoglutarate, succinate or malate. 3. In both types of mitochondria, respiration can be supported by the ADP formed by adenylate kinase or nucleotide diphosphate kinase, and, although to a lesser extent in Glc- mitochondria, by hexokinase. 4. Glc+ cells are characterized by a low respiration capacity and a high glycolytic flux leading to the Crabtree effect. Glc- cells are characterized by a better correlation between a moderate glycolytic flux and a high respiratory capacity.  相似文献   

12.
Glucose is absolutely essential for the survival and function of the brain. In our current understanding, there is no endogenous glucose production in the brain, and it is totally dependent upon blood glucose. This glucose is generated between meals by the hydrolysis of glucose-6-phosphate (Glc-6-P) in the liver and the kidney. Recently, we reported a ubiquitously expressed Glc-6-P hydrolase, glucose-6-phosphatase-beta (Glc-6-Pase-beta), that can couple with the Glc-6-P transporter to hydrolyze Glc-6-P to glucose in the terminal stages of glycogenolysis and gluconeogenesis. Here we show that astrocytes, the main reservoir of brain glycogen, express both the Glc-6-Pase-beta and Glc-6-P transporter activities and that these activities can couple to form an active Glc-6-Pase complex, suggesting that astrocytes may provide an endogenous source of brain glucose.  相似文献   

13.
Phosphoglucomutase (PGM) is a key enzyme in glucose metabolism, where it catalyzes the interconversion of glucose 1-phosphate (Glc-1-P) and glucose 6-phosphate (Glc-6-P). In this study, we make the novel observation that PGM is also involved in the regulation of cellular Ca(2+) homeostasis in Saccharomyces cerevisiae. When a strain lacking the major isoform of PGM (pgm2Delta) was grown on media containing galactose as sole carbon source, its rate of Ca(2+) uptake was 5-fold higher than an isogenic wild-type strain. This increased rate of Ca(2+) uptake resulted in a 9-fold increase in the steady-state total cellular Ca(2+) level. The fraction of cellular Ca(2+) located in the exchangeable pool in the pgm2Delta strain was found to be as large as the exchangeable fraction observed in wild-type cells, suggesting that the depletion of Golgi Ca(2+) stores is not responsible for the increased rate of Ca(2+) uptake. We also found that growth of the pgm2Delta strain on galactose media is inhibited by 10 microM cyclosporin A, suggesting that activation of the calmodulin/calcineurin signaling pathway is required to activate the Ca(2+) transporters that sequester the increased cytosolic Ca(2+) load caused by this high rate of Ca(2+) uptake. We propose that these Ca(2+)-related alterations are attributable to a reduced metabolic flux between Glc-1-P and Glc-6-P due to a limitation of PGM enzymatic activity in the pgm2Delta strain. Consistent with this hypothesis, we found that this "metabolic bottleneck" resulted in an 8-fold increase in the Glc-1-P level compared with the wild-type strain, while the Glc-6-P and ATP levels were normal. These results suggest that Glc-1-P (or a related metabolite) may participate in the control of Ca(2+) uptake from the environment.  相似文献   

14.
The glucose-6-phosphatase (Glc-6-Pase) family comprises two active endoplasmic reticulum (ER)-associated isozymes: the liver/kidney/intestine Glc-6-Pase-alpha and the ubiquitous Glc-6-Pase-beta. Both share similar kinetic properties. Sequence alignments predict the two proteins are structurally similar. During glucose 6-phosphate (Glc-6-P) hydrolysis, Glc-6-Pase-alpha, a nine-transmembrane domain protein, forms a covalently bound phosphoryl enzyme intermediate through His(176), which lies on the lumenal side of the ER membrane. We showed that Glc-6-Pase-beta is also a nine-transmembrane domain protein that forms a covalently bound phosphoryl enzyme intermediate during Glc-6-P hydrolysis. However, the intermediate was not detectable in Glc-6-Pase-beta active site mutants R79A, H114A, and H167A. Using [(32)P]Glc-6-P coupled with cyanogen bromide mapping, we demonstrated that the phosphate acceptor in Glc-6-Pase-beta is His(167) and that it lies inside the ER lumen with the active site residues, Arg(79) and His(114). Therefore Glc-6-Pase-alpha and Glc-6-Pase-beta share a similar active site structure, topology, and mechanism of action.  相似文献   

15.
The glucose 6-phosphate (Glc-6-P)-induced solubilization of mitochondrial hexokinase (ATP:d-hexose 6-phosphotransferase, EC 2.7.1.1) from rat brain can be reversed by low concentrations (ionic strength <~0.02 m) of neutral salts. When compared to the original particulate enzyme (i.e., enzyme found on the particles prior to solubilization by Glc-6-P), the rebound enzyme is similar in distribution on sucrose gradients, Km for ATP, inhibition by antiserum to purified brain hexokinase, and resistance to removal by exhaustive washing of the particles. The effectiveness of chloride salts at promoting rebinding increases in the order Cs+< Rb+< K+≤ Na+< Li+< Mg2+. This salt-induced rebinding is attributed to the screening of negative charges on the enzyme and/or membrane by cations, thereby decreasing repulsive forces and enhancing attractive interactions between enzyme and membrane. Solubilization of the enzyme, both in the presence and absence of Glc-6-P, is increased at alkaline pH, as would be expected due to increasing repulsive interactions between negative charges on membrane and enzyme as the pH is increased beyond the pI of the enzyme (pI = 6.3). In contrast to previous interpretations, Pi displayed no special efficacy at reversing Glc-6-P-induced solubilization, being comparable to other neutral salts on an ionic strength basis. However, Pi and its structural analog, arsenate, were shown to counteract specifically the Glc-6-P-induced inhibition and conformational change in the enzyme. At higher concentrations (ionic strength >~ 0.02 m) neutral salts themselves lead to reversible dissociation of the enzyme from the mitochondria. The efficacy of the salts depends primarily on the pH and on the position of the anion in the Hofmeister series, with salts of chaotropic anions (SCN?, I?, Br?) being most effective. At pH 6, both chaotropic and nonchaotropic salts solubilize the enzyme, while at pH 8.5, only the chaotropes retain this ability. Neutral salts also have a reversible effect on the conformation of the enzyme, as reflected by enzymatic activity, with chaotropic salts again being most effective; there is no pronounced influence of pH (in the range of pH 6–8.5) on the ability of the salts to cause conformational change in the enzyme. Based on a lack of correlation between saltinduced solubilization and conformational changes affecting activity, it is concluded that the latter are not directly responsible for release of the enzyme from the membrane. In the presence of KSCN, the extent of solubilization decreased with increase in temperature, indicating a negative enthalpy for solubilization. In contrast, in the absence of salt, the enthalpy for solubilization was positive. These temperature effects and the effects of neutral salts on the hexokinase-membrane interaction are interpreted in terms of a model in which electrostatic forces are considered to be of major importance. At low ionic strength, repulsive forces between negative charges on enzyme and membrane predominate; screening of these charges by cations diminishes the repulsion, effectively enhancing attractive electrostatic forces between enzyme and membrane and thus promoting their interaction. At higher ionic strengths, the attractive electrostatic forces are themselves disrupted, resulting in dissociation of the enzyme from the membrane. It is proposed that the greater effectiveness of chaotropic salts at disrupting these attractive forces is due to their increased ability to penetrate through hydrophobic regions of enzyme and membrane to relatively inaccessible sites of electrostatic-interaction.  相似文献   

16.
Glucose 1,6-bisphosphate (Glc-1,6-P(2)) concentration in brain is much higher than what is required for the functioning of phosphoglucomutase, suggesting that this compound has a role other than as a cofactor of phosphomutases. In cell-free systems, Glc-1,6-P(2) is formed from 1,3-bisphosphoglycerate and Glc-6-P by two related enzymes: PGM2L1 (phosphoglucomutase 2-like 1) and, to a lesser extent, PGM2 (phosphoglucomutase 2). It is hydrolyzed by the IMP-stimulated brain Glc-1,6-bisphosphatase of still unknown identity. Our aim was to test whether Glc-1,6-bisphosphatase corresponds to the phosphomannomutase PMM1, an enzyme of mysterious physiological function sharing several properties with Glc-1,6-bisphosphatase. We show that IMP, but not other nucleotides, stimulated by >100-fold (K(a) approximately 20 mum) the intrinsic Glc-1,6-bisphosphatase activity of recombinant PMM1 while inhibiting its phosphoglucomutase activity. No such effects were observed with PMM2, an enzyme paralogous to PMM1 that physiologically acts as a phosphomannomutase in mammals. Transfection of HEK293T cells with PGM2L1, but not the related enzyme PGM2, caused an approximately 20-fold increase in the concentration of Glc-1,6-P(2). Transfection with PMM1 caused a profound decrease (>5-fold) in Glc-1,6-P(2) in cells that were or were not cotransfected with PGM2L1. Furthermore, the concentration of Glc-1,6-P(2) in wild-type mouse brain decreased with time after ischemia, whereas it did not change in PMM1-deficient mouse brain. Taken together, these data show that PMM1 corresponds to the IMP-stimulated Glc-1,6-bisphosphatase and that this enzyme is responsible for the degradation of Glc-1,6-P(2) in brain. In addition, the role of PGM2L1 as the enzyme responsible for the synthesis of the elevated concentrations of Glc-1,6-P(2) in brain is established.  相似文献   

17.
Acyl-CoA esters inhibit the plastidial glucose 6-phosphate (Glc-6-P) transporter and the adenylate transporter; the IC(50) values for the inhibition by oleoyl-CoA (18:1-CoA) are 200-400 nM and 1-2 microM respectively. The inhibition of either of these processes significantly reduces the flux of carbon from Glc-6-P or from acetate into long-chain fatty acids. The effect is dependent on the acyl chain length, e.g. lauryl-CoA is less inhibitory than oleoyl-CoA, causing 34 and 68% inhibition respectively of Glc-6-P uptake after 30 s. The inhibition of Glc-6-P and ATP transport is alleviated by addition of an equivalent concentration of acyl-CoA-binding protein (ACBP) or BSA. Acyl-CoAs do not inhibit pyruvate or glucose transporters. The endogenous concentrations of acyl-CoAs and ACBP are similar during embryo maturation.  相似文献   

18.
Net rate constants that define the steady-state rate through a sequence of steps and the corresponding effective energy barriers for two (PO3-)-transfer steps in the phosphoglucomutase reaction were compared as a function of metal ion, M, where M = Mg2+ and Cd2+. These steps involve the reaction of either the 1-phosphate or the 6-phosphate of glucose 1,6-bisphosphate (Glc-P2) bound to the dephosphoenzyme (ED) to produce the phosphoenzyme (EP) and the free monophosphates, glucose 1-phosphate (Glc-1-P) or glucose 6-phosphate (Glc-6-P): EP.M + Glc-1-P----ED.M.Glc-P2----EP.M.Glc-6-P6. Before this comparison was made, net rate constants for the Cd2+ enzyme, obtained at high enzyme concentration via 31P NMR saturation-transfer studies [Post, C. B., Ray, W. J., Jr., & Gorenstein, D. G. (1989) Biochemistry (preceding paper in this issue)], were appropriately scaled by using the observed constants to calculate both the expected isotope-transfer rate at equilibrium and the steady-state rate under initial velocity conditions and comparing the calculated values with those measured in dilute solution. For the Mg2+ enzyme, narrow limits on possible values of the corresponding net rate constants were imposed on the basis of initial velocity rate constants for the forward and reverse directions plus values for the equilibrium distribution of central complexes, since direct measurement is not feasible. The effective energy barriers for both the Mg2+ and Cd2+ enzymes, calculated from the respective net rate constants, together with previously values for the equilibrium distribution of complexes in both enzymic systems [Ray, W. J., Jr., & Long, J. W. (1976) Biochemistry 15, 4018-4025], show that the 100-fold decrease in the kappa cat for the Cd2+ relative to the Mg2+ enzyme is caused by two factors: the increased stability of the intermediate bisphosphate complex and the decreased ability to cope with the phosphate ester involving the 1-hydroxyl group of the glucose ring. In fact, it is unlikely that the efficiency of (PO3-) transfer to the 6-hydroxyl group of bound Glc-1-P (thermodynamically favorable direction) is reduced by more than an order of magnitude in the Cd2+ enzyme. By contrast, the efficiency of the Li+ enzyme in the same (PO3-)-transfer step is less than 4 x 10(-8) that of the Mg2+ enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Injection of trifluoperazine (TFP) to rats induced a significant rise in the level of glucose 1,6-bisphosphate (Glc-1,6-P2) in muscle. This increase in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, was accompanied by a marked activation of both enzymes, when assayed in the absence of exogenous Glc-1,6-P2 under conditions in which these enzymes are sensitive to regulation by endogenous Glc-1,6-P2. Glucose-1,6-bisphosphatase (the enzyme that degrades Glc-1,6-P2) was markedly inhibited following the injection of TFP, which may account for the rise in the Glc-1,6-P2 level. Previous results from this laboratory have revealed that muscle damage or weakness is characterized by a decrease in Glc-1,6-P2 levels, leading to a marked reduction in the activities of phosphoglucomutase and phosphofructokinase (the rate-limiting enzyme in glycolysis). The present results suggest that TFP treatment may have a beneficial effect on the depressed glycolysis in muscle weakness or damage.  相似文献   

20.
The levels of glucose 1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, changed in rat skin during growth: Glc-1,6-P2 increased during the first week of age, and thereafter was dramatically reduced during maturation. The activity of glucose 1,6-bisphosphatase, the enzyme that degradates Glc-1,6-P2, changed with age in an invert manner as compared to the changes in Glc-1,6-P2. These findings suggest that the age dependent changes in this enzyme's activity may account for the changes in intracellular Glc-1,6-P2 concentration. The age-related changes in Glc-1,6-P2 were accompanied by concomitant changes in the activities of particulate (mitochondrial) hexokinase and 6-phosphogluconate dehydrogenase, the two enzymes known to be inhibited by Glc-1,6-P2. The activities of both these enzymes in the soluble fraction were not changed with age. The particulate enzymes were more susceptible to inhibition by Glc-1,6-P2 than the soluble activities, which may explain why only the particulate, but not the soluble activities, correlated with the age-dependent changes in tissue Glc-1,6-P2. These results suggest that the changes in particulate hexokinase and 6-phosphogluconate dehydrogenase resulted from changes in intracellular concentration of Glc-1,6-P2. The marked reduction in Glc-1,6-P2 during maturation, accompanied by activation of mitochondrial hexokinase and 6-phosphogluconate dehydrogenase, may reflect an enhancement in skin metabolism during growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号