首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs that are translationally dormant or masked until meiotic maturation. Activation of the oocyte by fertilization leads to translational activation of the abundant cyclin and ribonucleotide reductase mRNAs at a time when they undergo cytoplasmic polyadenylation. In vitro unmasking assays have defined U-rich regions located approximately centrally in the 3' UTRs of these mRNAs as translational masking elements. A clam oocyte protein of 82 kDa, p82, which selectively binds the masking elements, has been proposed to act as a translational repressor. Importantly, mRNA-specific unmasking in vitro occurs in the absence of poly(A) extension. Here we show that clam p82 is related to Xenopus CPEB, an RNA-binding protein that interacts with the U-rich cytoplasmic polyadenylation elements (CPEs) of maternal mRNAs and promotes their polyadenylation. Cloned clam p82/CPEB shows extensive homology to Xenopus CPEB and related polypeptides from mouse, goldfish, Drosophila and Caenorhabditis elegans, particularly in their RNA-binding C-terminal halves. Two short N-terminal islands of sequence, of unknown function, are common to vertebrate CPEBs and clam p82. p82 undergoes rapid phosphorylation either directly or indirectly by cdc2 kinase after fertilization in meiotically maturing clam oocytes, prior to its degradation during the first cell cleavage. Phosphorylation precedes and, according to inhibitor studies, may be required for translational activation of maternal mRNA. These data suggest that clam p82 may be a functional homolog of Xenopus CPEB.  相似文献   

2.
A conserved role of a DEAD box helicase in mRNA masking.   总被引:10,自引:1,他引:9       下载免费PDF全文
Clam p82 is a member of the cytoplasmic polyadenylation element-binding protein (CPEB) family of RNA-binding proteins and serves dual functions in regulating gene expression in early development. In the oocyte, p82/CPEB is a translational repressor, whereas in the activated egg, it acts as a polyadenylation factor. Coimmunoprecipitations were performed with p82 antibodies in clam oocyte and egg lysates to identify stage-regulated accessory factors. p47 coprecipitates with p82 from oocyte lysates in an RNA-dependent manner and is absent from egg lysate p92-bound material. Clam p47 is a member of the RCK/p54 family of DEAD box RNA helicases. Xp54, the Xenopus homolog, with bona fide helicase activity, is an abundant and integral component of stored mRNP in oocytes (Ladomery et al., 1997). In oocytes, clam p47 and p82/CPEB are found in large cytoplasmic mRNP complexes. Whereas the helicase level is constant during embryogenesis, in contrast to CPEB, clam p47 translocates to nuclei at the two-cell stage. To address the role of this class of helicase in masking, Xp54 was tethered via 3' UTR MS2-binding sites to firefly luciferase, following microinjection of fusion protein and nonadenylated reporter mRNAs into Xenopus oocytes. Tethered helicase repressed luciferase translation three- to fivefold and, strikingly, mutations in two helicase motifs (DEAD--> DQAD and HRIGR-->HRIGQ), activated translation three- to fourfold, relative to MS2. These data suggest that this helicase family represses translation of maternal mRNA in early development, and that its activity may be attenuated during meiotic maturation, prior to cytoplasmic polyadenylation.  相似文献   

3.
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs which are translationally dormant or masked until meiotic maturation. Fertilisation of the oocyte leads to rapid polysomal recruitment of the abundant cyclin and ribonucleotide reductase mRNAs at about the time they undergo cytoplasmic polyadenylation. Clam p82, a 3' UTR RNA-binding protein, and a member of the CPEB (cytoplasmic polyadenylation element binding protein) family, functions as a translational masking factor in oocytes and as a polyadenylation factor in fertilised eggs. In meiotically maturing clam oocytes, p82/CPEB is rapidly phosphorylated on multiple residues to a 92-kDa apparent size, prior to its degradation during the first cell cleavage. Here we examine the protein kinase(s) that phosphorylates clam p82/CPEB using a clam oocyte activation cell-free system that responds to elevated pH, mirroring the pH rise that accompanies fertilisation. We show that p82/CPEB phosphorylation requires Ca2+ (<100 microM) in addition to raised pH. Examination of the calcium dependency combined with the use of specific inhibitors implicates the combined and independent actions of cdc2 and MAP kinases in p82/CPEB phosphorylation. Calcium is necessary for both the activation and the maintenance of MAP kinase, whose activity is transient in vitro, as in vivo. While cdc2 kinase plays a role in the maintenance of MAP kinase activity, it is not required for the activation of MAP kinase. We propose a model of clam p82/CPEB phosphorylation in which MAP kinase initially phosphorylates clam p82/CPEB, at a minor subset of sites that does not alter its migration, and cdc2 kinase is necessary for the second wave of phosphorylation that results in the large mobility size shift of clam p82/CPEB. The possible roles of phosphorylation for the function and regulation of p82/CPEB are discussed.  相似文献   

4.
Cytoplasmic polyadenylation is a key mechanism controlling maternal mRNA translation in early development. In most cases, mRNAs that undergo poly(A) elongation are translationally activated; those that undergo poly(A) shortening are deactivated. Poly(A) elongation is regulated by two cis-acting sequences in the 3'-untranslated region (UTR) of responding mRNAs, the polyadenylation hexanucleotide AAUAAA and the U-rich cytoplasmic polyadenylation element (CPE). Previously, we cloned and characterized the Xenopus oocyte CPE binding protein (CPEB), showing that it was essential for the cytoplasmic polyadenylation of B4 RNA. Here, we show that CPEB also binds the CPEs of G10, c-mos, cdk2, cyclins A1, B1 and B2 mRNAs. We find that CPEB is necessary for polyadenylation of these RNAs in egg extracts, suggesting that this protein is required for polyadenylation of most RNAs during oocyte maturation. Our data demonstrate that the complex timing and extent of polyadenylation are partially controlled by CPEB binding to multiple target sites in the 3' UTRs of responsive mRNAs. Finally, injection of CPEB antibody into oocytes not only inhibits polyadenylation in vivo, but also blocks progesterone-induced maturation. This is due to inhibition of polyadenylation and translation of c-mos mRNA, suggesting that CPEB is critical for early development.  相似文献   

5.
Translational activation in oocytes and embryos is often regulated via increases in poly(A) length. Cleavage and polyadenylation specificity factor (CPSF), cytoplasmic polyadenylation element binding protein (CPEB), and poly(A) polymerase (PAP) have each been implicated in cytoplasmic polyadenylation in Xenopus laevis oocytes. Cytoplasmic polyadenylation activity first appears in vertebrate oocytes during meiotic maturation. Data presented here shows that complexes containing both CPSF and CPEB are present in extracts of X. laevis oocytes prepared before or after meiotic maturation. Assessment of a variety of RNA sequences as polyadenylation substrates indicates that the sequence specificity of polyadenylation in egg extracts is comparable to that observed with highly purified mammalian CPSF and recombinant PAP. The two in vitro systems exhibit a sequence specificity that is similar, but not identical, to that observed in vivo, as assessed by injection of the same RNAs into the oocyte. These findings imply that CPSFs intrinsic RNA sequence preferences are sufficient to account for the specificity of cytoplasmic polyadenylation of some mRNAs. We discuss the hypothesis that CPSF is required for all polyadenylation reactions, but that the polyadenylation of some mRNAs may require additional factors such as CPEB. To test the consequences of PAP binding to mRNAs in vivo, PAP was tethered to a reporter mRNA in resting oocytes using MS2 coat protein. Tethered PAP catalyzed polyadenylation and stimulated translation approximately 40-fold; stimulation was exclusively cis-acting, but was independent of a CPE and AAUAAA. Both polyadenylation and translational stimulation required PAPs catalytic core, but did not require the putative CPSF interaction domain of PAP. These results demonstrate that premature recruitment of PAP can cause precocious polyadenylation and translational stimulation in the resting oocyte, and can be interpreted to suggest that the role of other factors is to deliver PAP to the mRNA.  相似文献   

6.
7.
Translational control by cytoplasmic polyadenylation in Xenopus oocytes   总被引:2,自引:0,他引:2  
Elongation of the poly(A) tails of specific mRNAs in the cytoplasm is a crucial regulatory step in oogenesis and early development of many animal species. The best studied example is the regulation of translation by cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region of mRNAs involved in Xenopus oocyte maturation. In this review we discuss the mechanism of translational control by the CPE binding protein (CPEB) in Xenopus oocytes as follows: Finally we discuss some of the remaining questions regarding the mechanisms of translational regulation by cytoplasmic polyadenylation and give our view on where our knowledge is likely to be expanded in the near future.  相似文献   

8.
CPEB: a life in translation   总被引:12,自引:0,他引:12  
Nearly two decades ago, Xenopus oocytes were found to contain mRNAs harboring a small sequence in their 3' untranslated regions that control cytoplasmic polyadenylation and translational activation during development. This cytoplasmic polyadenylation element (CPE) is the binding platform for CPE-binding protein (CPEB), which promotes polyadenylation-induced translation. Since then, the biochemistry and biology of CPEB has grown rather substantially: mechanistically, CPEB nucleates a complex of factors that regulates poly(A) elongation through, of all things, a deadenylating enzyme; biologically, CPEB mediates many processes including germ-cell development, cell division and cellular senescence, and synaptic plasticity and learning and memory. These observations underscore the growing complexities of CPEB involvement in cell function.  相似文献   

9.
Cytoplasmic poly(A) elongation is widely utilized during the early development of many organisms as a mechanism for translational activation. Targeting of mRNAs for this mechanism requires the presence of a U-rich element, the cytoplasmic polyadenylation element (CPE), and its binding protein, CPEB. Blocking cytoplasmic polyadenylation by interfering with the CPE or CPEB prevents the translational activation of mRNAs that are crucial for oocyte maturation. The CPE sequence and CPEB are also important for translational repression of mRNAs stored in the Xenopus oocyte during oogenesis. To understand the contribution of protein metabolism to these two roles for CPEB, we have examined the mechanisms influencing the expression of CPEB during oogenesis and oocyte maturation. Through a comparison of CPEB mRNA levels, protein synthesis, and accumulation, we find that CPEB is synthesized during oogenesis and stockpiled in the oocyte. Minimal synthesis of CPEB, <3.6%, occurs during oocyte maturation. In late oocyte maturation, 75% of CPEB is degraded coincident with germinal vesicle breakdown. Using proteasome and ubiquitination inhibitors, we demonstrate that CPEB degradation occurs via the proteasome pathway, most likely through ubiquitin-conjugated intermediates. In addition, we demonstrate that degradation requires a 14 amino acid PEST domain.  相似文献   

10.
During early development, control of the poly(A) tail length by cytoplasmic polyadenylation is critical for the regulation of specific mRNA expression. Gld2, an atypical poly(A) polymerase, is involved in cytoplasmic polyadenylation in Xenopus oocytes. In this study, a new XGld2-interacting protein was identified: Xenopus RNA-binding motif protein 9 (XRbm9). This RNA-binding protein is exclusively expressed in the cytoplasm of Xenopus oocytes and interacts directly with XGld2. It is shown that XRbm9 belongs to the cytoplasmic polyadenylation complex, together with cytoplasmic polyadenylation element-binding protein (CPEB), cleavage and polyadenylation specificity factor (CPSF) and XGld2. In addition, tethered XRbm9 stimulates the translation of a reporter mRNA. The function of XGld2 in stage VI oocytes was also analysed. The injection of XGld2 antibody into oocytes inhibited polyadenylation, showing that endogenous XGld2 is required for cytoplasmic polyadenylation. Unexpectedly, XGld2 and CPEB antibody injections also led to an acceleration of meiotic maturation, suggesting that XGld2 is part of a masking complex with CPEB and is associated with repressed mRNAs in oocytes.  相似文献   

11.
Meiotic progression requires the translational activation of stored maternal mRNAs, such as those encoding cyclin B1 or mos. The translation of these mRNAs is regulated by the cytoplasmic polyadenylation element (CPE) present in their 3'UTRs, which recruits the CPE-binding protein CPEB. This RNA-binding protein not only dictates the timing and extent of translational activation by cytoplasmic polyadenylation but also participates, together with the translational repressor Maskin, in the transport and localization, in a quiescent state, of its targets to subcellular locations where their translation will take place. During the early development of Xenopus laevis, CPEB localizes at the animal pole of oocytes and later on at embryonic spindles and centrosomes. Disruption of embryonic CPEB-mediated translational regulation results in abnormalities in the mitotic apparatus and inhibits embryonic mitosis. Here we show that spindle-localized translational activation of CPE-regulated mRNAs, encoding for proteins with a known function in spindle assembly and chromosome segregation, is essential for completion of the first meiotic division and for chromosome segregation in Xenopus oocytes.  相似文献   

12.
13.
Translational activation of several dormant mRNAs in vertebrate oocytes is mediated by cytoplasmic polyadenylation, a process controlled by the cytoplasmic polyadenylation element (CPE) and its binding protein CPEB. The translation of CPE-containing mRNAs does not occur en masse at any one time, but instead is temporally regulated. We show here that in Xenopus, partial destruction of CPEB controls the temporal translation of CPE-containing mRNAs. While some mRNAs, such as the one encoding Mos, are polyadenylated at prophase I, the polyadenylation of cyclin B1 mRNA requires the partial destruction of CPEB that occurs at metaphase I. CPEB destruction is mediated by a PEST box and Cdc2-catalyzed phosphorylation, and is essential for meiotic progression to metaphase II. CPEB destruction is also necessary for mitosis in the early embryo. These data indicate that a change in the CPEB:CPE ratio is necessary to activate mRNAs at metaphase I and drive the cells' entry into metaphase II.  相似文献   

14.
15.
During meiotic maturation of Spisula oocytes, maternal mRNAs undergo changes in translation and in the length of their poly(A) tails. In general, those mRNAs that are translationally activated, i.e., unmasked become polyadenylated, while deactivated mRNAs lose their poly(A) tails. The activated class of mRNAs encode ribonucleotide reductase, cyclins A and B and histone H3, while the proteins that stop being made include tubulin and actin. Previously, we demonstrated that mRNA-specific unmasking can be brought about in vitro by preventing the interaction of protein(s) with central portions of the 3′ noncoding regions (masking regions) of ribonucle-otide reductase and cyclin A mRNAs. In this report, we show that clam egg extracts are capable of sequence-specific polyadenylation of added RNAs since the 3′ untranslated regions (UTRs) of ribonu-cleotide reductase and histone H3 mRNAs are polyadenylated, while that of actin mRNA is not. In contrast, oocyte extracts, as in vivo, are essentially devoid of polyadenylation activity. We present an initial characterisation of the cis-acting sequences in the 3′ UTR of ribonucleotide reductase mRNA required for polyadenylation. The results suggest that the sequences for cytoplasmic polyadenylation are more complex and extensive than those determined in vertebrates and that they may partly overlap with the masking regions. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The release of Xenopus oocytes from prophase I arrest is largely driven by the cytoplasmic polyadenylation-induced translation of dormant maternal mRNAs. Two cis elements, the CPE and the hexanucleotide AAUAAA, and their respective binding factors, CPEB and a cytoplasmic form of CPSF, control polyadenylation. The most proximal stimulus for polyadenylation is Eg2-catalyzed phosphorylation of CPEB serine 174. Here, we show that this phosphorylation event stimulates an interaction between CPEB and CPSF. This interaction is direct, does not require RNA tethering, and occurs through the 160 kDa subunit of CPSF. Eg2-stimulated and CPE-dependent polyadenylation is reconstituted in vitro using purified components. These results demonstrate that the molecular function of Eg2-phosphorylated CPEB is to recruit CPSF into an active cytoplasmic polyadenylation complex.  相似文献   

17.
Cao Q  Richter JD 《The EMBO journal》2002,21(14):3852-3862
Cytoplasmic polyadenylation stimulates the translation of several dormant mRNAs during oocyte maturation in XENOPUS: Polyadenylation is regulated by the cytoplasmic polyadenylation element (CPE), a cis-acting element in the 3'-untranslated region of responding mRNAs, and its associated factor CPEB. CPEB also binds maskin, a protein that in turn interacts with eIF4E, the cap-binding factor. Here, we report that based on antibody and mRNA reporter injection assays, maskin prevents oocyte maturation and the translation of the CPE-containing cyclin B1 mRNA by blocking the association of eIF4G with eIF4E. Dissociation of the maskin-eIF4E complex is essential for cyclin B1 mRNA translational activation, and requires not only cytoplasmic polyadenylation, but also the poly(A)-binding protein. These results suggest a molecular mechanism by which CPE- containing mRNA is activated in early development.  相似文献   

18.
Activity-dependent polyadenylation in neurons   总被引:4,自引:1,他引:3       下载免费PDF全文
Du L  Richter JD 《RNA (New York, N.Y.)》2005,11(9):1340-1347
Activity-dependent changes in protein synthesis modify synaptic efficacy. One mechanism that regulates mRNA translation in the synapto-dendritic compartment is cytoplasmic polyadenylation, a process controlled by CPEB, the cytoplasmic polyadenylation element (CPE)-specific RNA binding protein. In neurons, very few mRNAs are known CPEB substrates, and none appear to be responsible for the effects on plasticity that are found in the CPEB knockout mouse. These results suggest that the translation of other mRNAs is regulated by CPEB. To identify them, we have developed a functional assay based on the polyadenylation of brain-derived mRNAs injected into Xenopus oocytes, a surrogate system that carries out this 3' end processing event in an efficient manner. The polyadenylated RNAs were isolated by binding to and thermal elution from poly(U) agarose and identified by microarray analysis. Selected sequences that were positive for polyadenylation were cloned and retested for polyadenylation by injection into oocytes. These sequences were then examined for activity-dependent polyadenylation in cultured hippocampal neurons. Finally, the levels of two proteins encoded by polyadenylated mRNAs were examined in glutamate-stimulated synaptoneurosomes. These studies show that many mRNAs undergo activity-dependent polyadenylation in neurons and that this process coincides with increased translation in the synapto-dendritic compartment.  相似文献   

19.
In Xenopus, the CPE is a bifunctional 3' UTR sequence that maintains maternal mRNA in a dormant state in oocytes and activates polyadenylation-induced translation during oocyte maturation. Here, we report that CPEB, which binds the CPE and stimulates polyadenylation, interacts with a new factor we term maskin. Maskin contains a peptide sequence that is conserved among elF-4E-binding proteins. Affinity chromatography demonstrates that CPEB, maskin, and elF-4E reside in a complex in oocytes, and yeast two-hybrid analyses indicate that CPEB and maskin bind directly, as do maskin and elF-4E. While CPEB and maskin remain together during oocyte maturation, the maskin-elF-4E interaction is substantially reduced. The dissolution of this complex may result in the binding of elF-4E to elF-4G and the translational activation of CPE-containing mRNAs.  相似文献   

20.
Xenopus laevis Vgl mRNA undergoes both localization and translational control during oogenesis. Vg1 protein does not appear until late stage IV, after localization is complete. To determine whether Vg1 translation is regulated by cytoplasmic polyadenylation, the RACE-PAT method was used. Vg1 mRNA has a constant poly(A) tail throughout oogenesis, precluding a role for cytoplasmic polyadenylation. To identify cis-acting elements involved in Vg1 translational control, the Vg1 3' UTR was inserted downstream of the luciferase ORF and in vitro transcribed, adenylated mRNA injected into stage III or stage VI oocytes. The Vg1 3' UTR repressed luciferase translation in both stages. Deletion analysis of the Vg1 3' UTR revealed that a 250-nt UA-rich fragment, the Vg1 translational element or VTE, which lies 118 nt downstream of the Vg1 localization element, could repress translation as well as the full-length Vg1 3' UTR. Poly(A)-dependent translation is not necessary for repression as nonadenylated mRNAs are also repressed, but cap-dependent translation is required as introduction of the classical swine fever virus IRES upstream of the luciferase coding region prevents repression by the VTE. Repression by the Vg1 3' UTR has been reproduced in Xenopus oocyte in vitro translation extracts, which show a 10-25-fold synergy between the cap and poly(A) tail. A number of proteins UV crosslink to the VTE including FRGY2 and proteins of 36, 42, 45, and 60 kDa. The abundance of p42, p45, and p60 is strikingly higher in stages I-III than in later stages, consistent with a possible role for these proteins in Vg1 translational control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号