首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The aim of this study was to investigate the influence of protracted overall treatment times on the development and repair of renal irradiation injury in mice. Functional kidney damage was measured, from the proportion of 51CrEDTA remaining in the plasma at 30 min after injection of the tracer. Damage was assessed at monthly intervals for up to 14 months after two equal doses of X-rays given in 1 day, 1 month or 6 months. There was no difference between the time of onset or rate of development of damage after two fractions in 1 day or 1 month, but there was a time lag of 7-15 weeks (depending on dose) before the development of damage after 2F given in 6 months. After this time lag the rate of progression of damage was the same for 2F/6 months as for 2F in the shorter intervals. There was therefore no indication of any increase in total tolerated dose for the kidney when the treatment time was protracted, although the time scales for onset of this damage differed. Tolerance of mouse kidneys to reirradiation at 6 months after single doses of 6-12 Gy was also assessed. All of the previously irradiated animals developed a more severe renal impairment after reirradiation than did the age-matched control mice. The most severe damage occurred in mice which received the highest initial radiation doses, but doses of only 6 Gy were sufficient to markedly reduce the tolerance to reirradiation. It was concluded from these studies that no additional dose-sparing (tissue recovery) took place in the kidneys during a 6-month interval. This was true even when the initial radiation dose alone was insufficient to cause measurable renal dysfunction.  相似文献   

2.
These experiments were designed to study the kinetics and magnitude of cell repair and repopulation in tissues whose damage results in the tumor bed effect. The right hind thighs of mice were irradiated with single doses or two equal gamma-ray fractions. Interfraction intervals ranging from 30 min to 24 h (to measure the kinetics of repair from sublethal damage) and 6 and 12 weeks (to determine the extent of repopulation) were used. One day after the second radiation dose 5 X 10(5) FSA tumor cells were inoculated into the center of the irradiated field. Radiation dose-response curves were obtained by calculating the time required for tumors to reach 12 mm diameter. No recovery occurred within 6 h of the radiation delivery as measured by this assay. Some recovery, 3.2-4.6 Gy above a single radiation dose, occurred when the interval between two fractions was 24 h. With increasing interfraction intervals of 6 and 12 weeks further dose sparing occurred in the amount of 5.0-6.9 and 7.5-8.3 Gy, respectively. The data suggest that repopulation is the major contributor to the radiation dose-sparing recovery of stromal tissue and that some proliferative response may occur as early as 1 day after the first irradiation.  相似文献   

3.
The response of mouse kidneys to multifraction irradiation was assessed using three nondestructive functional end points. A series of schedules was investigated giving 1, 2, 4, 8, 16, 32, or 64 equal X-ray doses, using doses per fraction in the range of 0.9 to 16 Gy. The overall treatment time was kept constant at 3 weeks. Kidney function was assessed from 19 to 48 weeks after irradiation by measuring changes in isotope clearance, urine output, and hematocrit. The degree of anemia (assessed from the hematocrit measurements) is a newly developed assay which is an early indicator of the extent of renal damage after irradiation. All three assays yielded steep dose-effect curves from which the repair capacity of kidney could be estimated by comparing the isoeffective doses in different schedules. There was a marked influence of fractionation, with increasing dose being required to achieve the same level of damage for increasing fraction number, even between 32 and 64 fractions. The data are well fitted by a linear quadratic dose-response equation, and analysis of the data in this way yields low values (approximately 3.0 Gy) for the ratio alpha/beta. This would suggest that hyperfractionation , using extremely small X-ray doses per fraction, would spare kidneys relative to tumors and acutely responding tissues.  相似文献   

4.
Effects of ionizing radiation registered in cells after low dose irradiation are still poorly understood. A pulsed mode of irradiation is even more problematic in terms of predicting the radiation-induced response in cells. Thus, the aim of this paper was to study and analyze the effects of dose and frequency of pulsed X-rays on the frequency of radiation-induced DNA double-strand breaks and their repair kinetics in human peripheral blood lymphocytes in vitro. Analysis of radiation-induced gammaH2AX and 53BP1 repair foci was used to assess the DNA damage in these cells. The dose-response curve of radiation-induced foci of both proteins has shown deviations from linearity to a higher effect in the 12-32 mGy dose range and a lower effect at 72 mGy. The dose-response curve was linear at doses higher than 100 mGy. The number of radiation-induced gammaH2AX and 53BP1 foci depended on the frequency of X-ray pulses: the highest effect was registered at 13 pulses per second. Moreover, slower repair kinetics was observed for those foci induced by very low doses with a nonlinear dose-response relationship.  相似文献   

5.
Spheroids grown from the human cell line EF8 of a lung metastasis of a human malignant fibrous histiocytoma were given fractionated irradiation with 60Co gamma rays at passages 31 and 32. The mean diameter of the spheroids at the time of treatment was 250 microns. Growth delay was used as the end point in these studies. Two experiments were carried out to determine the capacity and kinetics of repair of sublethal damage. In the first experiment, one, two, and five fractions were given at three or four dose levels with fixed intervals of 360 min. In the second experiment, schedules with two and four dose fractions and intervals of 0, 20, 60, 120, and 360 min were used, each at two dose levels. Data analysis was performed by a direct method based on the alpha/beta model and first-order repair kinetics of radiation damage. In both experiments, the alpha/beta value of EF8 spheroids was estimated to be about 8 (6-10) Gy. The rate constant of repair, mu, and its 95% confidence interval were estimated to be 0.62 (0.40-0.84) 10(-2) min-1, equivalent to a half-time of repair (T1/2) of 112 (83-172) min. A more detailed analysis of the data of the second experiment revealed a significant dependence of the rate constant of repair, mu, on the total radiation effect induced by the fractionated radiation treatments with short overall times. With increasing level of effect, mu decreased. These data indicate that the half-time of recovery of a human tumor can be longer than that of the surrounding normal tissue, in this case lung, at least for a limited range of doses and for some fractionation schedules.  相似文献   

6.
7.
In studying the dose (0.1-6 Gy) and time (2 h to 180 days) dependence of ornithine decarboxylase activity, it was found that deviations from the control were more pronounced in the thymus than in the pulmonary tissue. The radiation effect was a function of dose and time after irradiation. A nonmonotonous type of the dose-response curve was observed 7 days after irradiation: the radiation effect with a low dose (0.1 Gy) was opposite to that with sublethal doses (1-6 Gy).  相似文献   

8.
The effect of cis-diamminedichloroplatinum (II) (c-DDP) on the shape of the radiation dose-response curve for mouse duodenal crypt cells was investigated. A priming X-ray dose was followed 18 h later by graded test doses (single doses or five equal fractions at 3-h intervals) with or without c-DDP. Curves were fitted by a linear quadratic (LQ) relationship. The drug modified the dose-response curve by enhancing both the alpha and the beta terms. Repair kinetics were analyzed in split-dose experiments. c-DDP caused a minor, nonsignificant decrease in the rate of repair after irradiation. The survival ratio after split-dose irradiation, when the same X-ray doses were given, was actually slightly increased by the drug. This paradoxical effect can be explained by the fact that c-DDP mainly increased the beta term in the LQ relationship. There was no significant increase in crypt cell survival when split-drug doses were given alone at increasing intervals, suggesting no cellular repair after c-DDP treatment. The data are discussed in the light of the recently proposed "lethal and potentially lethal" (LPL) unified repair model of Curtis.  相似文献   

9.
Adaptive responses are induced by stress such as X radiation and result in a lower than expected biological response. Two-dose adaptive response experiments typically involve a low priming dose followed by a subsequent high radiation dose. Here, we used a sensitive in vivo chromosomal inversion assay to demonstrate for the first time an adaptive response when a low dose (0.01-1 mGy) was given several hours after a high 1000-mGy radiation dose. The adaptive responses in this study were of similar magnitude to the two-dose adaptive responses previously observed in this test system when the low dose was given first. A chromosomal inversion adaptive response was also induced by two 1000-mGy doses and when a 1-mGy dose was preceded or followed by a dose of 0.01 mGy, but not by two 4000-mGy doses. This is also the first example of an adaptive response when both doses are low. Our data agree with previous reports of an on-off mechanism of adaptive response. The induction of an adaptive response by a low dose after a high damaging dose provides evidence that the mechanisms underlying radiation adaptive responses are not due to prevention of damage induced by the high dose but to modulation of the cellular response to this damage.  相似文献   

10.
Previous studies have indicated that thyroid cancer risk after a first childhood malignancy is curvilinear with radiation dose, increasing at low to moderate doses and decreasing at high doses. Understanding factors that modify the radiation dose response over the entire therapeutic dose range is challenging and requires large numbers of subjects. We quantified the long-term risk of thyroid cancer associated with radiation treatment among 12,547 5-year survivors of a childhood cancer (leukemia, Hodgkin lymphoma and non-Hodgkin lymphoma, central nervous system cancer, soft tissue sarcoma, kidney cancer, bone cancer, neuroblastoma) diagnosed between 1970 and 1986 in the Childhood Cancer Survivor Study using the most current cohort follow-up to 2005. There were 119 subsequent pathologically confirmed thyroid cancer cases, and individual radiation doses to the thyroid gland were estimated for the entire cohort. This cohort study builds on the previous case-control study in this population (69 thyroid cancer cases with follow-up to 2000) by allowing the evaluation of both relative and absolute risks. Poisson regression analyses were used to calculate standardized incidence ratios (SIR), excess relative risks (ERR) and excess absolute risks (EAR) of thyroid cancer associated with radiation dose. Other factors such as sex, type of first cancer, attained age, age at exposure to radiation, time since exposure to radiation, and chemotherapy (yes/no) were assessed for their effect on the linear and exponential quadratic terms describing the dose-response relationship. Similar to the previous analysis, thyroid cancer risk increased linearly with radiation dose up to approximately 20 Gy, where the relative risk peaked at 14.6-fold (95% CI, 6.8-31.5). At thyroid radiation doses >20 Gy, a downturn in the dose-response relationship was observed. The ERR model that best fit the data was linear-exponential quadratic. We found that age at exposure modified the ERR linear dose term (higher radiation risk with younger age) (P < 0.001) and that sex (higher radiation risk among females) (P = 0.008) and time since exposure (higher radiation risk with longer time) (P < 0.001) modified the EAR linear dose term. None of these factors modified the exponential quadratic (high dose) term. Sex, age at exposure and time since exposure were found to be significant modifiers of the radiation-related risk of thyroid cancer and as such are important factors to account for in clinical follow-up and thyroid cancer risk estimation among childhood cancer survivors.  相似文献   

11.
The survival probability of a living cell exposed to ionizing radiation in an experimental setup is derived. The survival of a cell depends on the severity of the radiation damage and efficiency of the cellular repair. The formula of the survival probability is expressed as a function of dose, nonlinear rate of lesion induction, nonlinear rate of cellular repair, and a key experimental parameter--the holding time. The result is an extension of the Markovian dose-response model developed by Yang and Swenberg.  相似文献   

12.

Background and Purpose

Most information on the dose-response of radiation-induced cancer is derived from data on the A-bomb survivors. Since, for radiation protection purposes, the dose span of main interest is between zero and one Gy, the analysis of the A-bomb survivors is usually focused on this range. However, estimates of cancer risk for doses larger than one Gy are becoming more important for radiotherapy patients. Therefore in this work, emphasis is placed on doses relevant for radiotherapy with respect to radiation induced solid cancer.

Materials and methods

For various organs and tissues the analysis of cancer induction was extended by an attempted combination of the linear-no-threshold model from the A-bomb survivors in the low dose range and the cancer risk data of patients receiving radiotherapy for Hodgkin's disease in the high dose range. The data were fitted using organ equivalent dose (OED) calculated for a group of different dose-response models including a linear model, a model including fractionation, a bell-shaped model and a plateau-dose-response relationship.

Results

The quality of the applied fits shows that the linear model fits best colon, cervix and skin. All other organs are best fitted by the model including fractionation indicating that the repopulation/repair ability of tissue is neither 0 nor 100% but somewhere in between. Bone and soft tissue sarcoma were fitted well by all the models. In the low dose range beyond 1 Gy sarcoma risk is negligible. For increasing dose, sarcoma risk increases rapidly and reaches a plateau at around 30 Gy.

Conclusions

In this work OED for various organs was calculated for a linear, a bell-shaped, a plateau and a mixture between a bell-shaped and plateau dose-response relationship for typical treatment plans of Hodgkin's disease patients. The model parameters (α and R) were obtained by a fit of the dose-response relationships to these OED data and to the A-bomb survivors. For any three-dimensional inhomogenous dose distribution, cancer risk can be compared by computing OED using the coefficients obtained in this work.  相似文献   

13.
Irradiation affects numerous physiological processes within cells and tissues and can lead to damage or death. If the damage is not too severe, cells have the ability to repair and regenerate. Many small injuries are repaired more easily than ones causing extensive damage and, consequently, tissue typically respond differently to one large dose of radiation than to many small doses, separated in time. In the radiotherapy of tumors, the choice of the fractionation regimen of dose over time is therefore as crucial as the total radiation dose. The interdependence between total dose, fractionation regimen, and radiation effect has been described mathematically with variousisoeffect relationships. These relationships appear to be fundamentally distinct and have been considered unrelated; some even claim that one class of isoeffect relationship is appropriate whereas other relationships are rather useless. We examine how alternative isoeffect models relate to each other and test the reliability of estimating parameter values of one model from the other.  相似文献   

14.
Repair of potentially lethal damage (PLD) was studied in the RIF-1 tumor system in several different growth states in vivo and in vitro. Exponentially growing, fed plateau, and unfed plateau cells in cell culture as well as small and large subcutaneous or intramuscular tumors were investigated. Large single doses of radiation followed by variable repair times as well as graded doses of radiation to generate survival curves immediately after irradiation or after full repair were investigated. All repair-promoting conditions studied in vitro (delayed subculture, exposure of cells to depleted growth medium after irradiation) increased surviving fraction after a single dose. The D0 of the cell survival curve was also increased by these procedures. No PLD repair was observed for any tumors irradiated in vivo and maintained in the animal for varying times prior to assay in vitro. The nearly 100% cell yield obtained when this tumor is prepared as a single-cell suspension for colony formation, the representative cell sample obtained, and the constant cell yield per gram as a function of time postirradiation suggest that this discrepancy is not an artifact of the assay system. The most logical explanation of these data and information on radiocurability of this neoplasm is that PLD repair, which is so frequently demonstrated in vitro, may not be a major factor in the radioresponse of this tumor when left in situ.  相似文献   

15.
Two rat tumor cell lines which differ significantly in radiosensitivity, a rhabdomyosarcoma (R-1) and a ureter carcinoma (RUC-2), were treated with multiple fractions per day and low-dose-rate gamma radiation. The purpose of these experiments was to investigate (i) the influence of fraction size and interfraction interval on repair of sublethal damage (SD) and (ii) whether low-dose-rate irradiation can be simulated by giving multiple fractions per day which might be applied in clinical treatments. In both cell lines, multiple doses were given at 1- to 4-hr intervals. SD repair was at a maximum in 2 hr but did not reach the theoretically expected level. For both cell lines, survival at higher total doses was different from that theoretically expected if repair of SD was assumed to be completed and at the maximum level. To account for the observation that less than complete repair of SD occurred, theoretical survival curves were calculated with the assumption of a constant but less than 100% level of SD repair. Experimental data correlated well with these calculated curves. There were only very small differences in survival after the different multiple fractions per day regimens. Survival after irradiation at a dose rate of 1.00 Gy/hr was found to be similar to that after multiple fractions per day.  相似文献   

16.
Dose fractionation of a direct-acting chemical carcinogen, the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), was studied for its concurrent effects on survival, DNA damage and repair, ouabain resistance (Ouar) mutations and neoplastic transformation, in the mouse embryo cell line BALB/3T3 C1A31-1-1. MNNG doses of 0.5, 1 and 2 micrograms/ml were added to the cells either as a single exposure or in two equal fractions separated by 1, 3 or 5 h intervals. No significant difference in cytotoxicity was found when single and split-dose treatments were compared. No recovery from sublethal damage was therefore found in this cell line by split-dose administration of MNNG, although such an effect was found when the same cell line was treated with single and split doses of X-rays. Repair of DNA damage as measured by alkaline elution was studied up to 24 h after a single MNNG exposure (0.5 micrograms/ml). DNA repair was rapid during the first 5 h after treatment and slow thereafter. DNA damage detected after split doses of MNNG at 1 and 5 h intervals was significantly lower than after a corresponding single dose. With both single and split doses, rejoining of single-strand breaks (ssb) was nearly complete after 24 h of repair time. Ouar mutation and neoplastic transformation frequencies were determined for single and split doses of MNNG with the second treatment being given during (1 h) or after (5 h) the period of rapid DNA repair. No significant differences in either effect were detected for dose splitting at any tested dose.  相似文献   

17.
The use of the methods of multifactor, orthogonal and composition planning in studying the behavioural disturbances in rats after gamma irradiation with doses of 0.258 to 1.29 C/kg and the application of the proposed method of discrimination of effects by empirical models permitted to establish the informative and adequate dependences of the probability of these disturbances on dose of nonuniform irradiation and the degree of strengthening of the conditioned reflex. It was shown that the effect of radiation decreased, in a discrete manner, the probability of making the first decision by rats in a behavioural task (here we deal with the "dose-response" function). The average time of making the first decision after irradiation was invariable within the dose range under study. Within the range of the studied factors both the value of the dose of whole-body irradiation and the degree of strengthening of the conditioned reflex significantly affected the probability of fulfilling the task by the animals the significance of the radiation dose being several times higher. The effects of the interaction of the two factors, that is, irradiation and the degree of the radiation affection, were insignificant in changing the behavioural reactions under study.  相似文献   

18.
An experimental model has been developed for quantitative studies of radiobiological damage to the canine small intestine following partial-body nonuniform irradiation. Animals were irradiated with 60Co gamma rays to simulate the nonuniform irradiation which do occur in victims of radiation accidents. The model used a short source-to-surface distance for unilateral irradiations to produce a dose gradient of a factor of two laterally across the canine intestinal region. The remainder of the animal's body was shielded to prevent lethal damage to the bone marrow. In situ dosimetry measurements were made using thermoluminescent dosimeters to determine the radiation dose delivered as a function of position along a segment of the small intestine. This system made it possible to correlate the radiation dose delivered at a specific point along the small intestine with the macroscopic and microscopic appearance of the intestinal mucosa at that point, as determined by direct observation and biopsy using a fiberoptic endoscope. A key feature of this model is that dosimetry data for multiple sites, which receive a graded range of radiation doses, can be correlated with biological measurements to obtain a dose-response curve. This model is being used to evaluate the efficacy of new therapeutic procedures to improve survival following nonuniform irradiation.  相似文献   

19.
The capacity of a human germ-cell tumour line to repair radiation damage has been investigated by means of a clonogenic assay. Dose-rate dependence studies, split-dose experiments and experiments designed to measure repair of potentially lethal damage have been performed. The cells showed some ability to repair radiation-induced damage in all three types of experiment. An attempt has been made to understand the possible cellular mechanisms of these repair processes by the use of 3-aminobenzamide (3-AB), an agent thought to act by inhibition of ADP-ribosylation. 3-AB added 2 h prior to and removed 18 h after irradiation at a non-toxic dose to unirradiated cells caused a small but consistent increase in cell kill with acute (150 cGy min-1) irradiation, largely involving a reduction in the shoulder region of the survival curve, but had a greater effect in increasing cell kill at a dose rate of 7.6 cGy min-1 and an even greater effect at a dose rate of 1.6 cGy min-1. When 3-Ab was present 2 h prior to the first dose and between two equal doses in a split-dose experiment, inhibition of split-dose recovery was observed. In addition, some inhibition of potentially lethal damage recovery was observed with 3-AB. A possible role for poly(ADP-ribosylation) is thus implicated in the repair of radiation-induced damage of this human tumour cell line during continuous low dose rate or fractionated radiation schedules, although other effects of 3-AB on respiratory metabolism and/or purine synthesis cannot be eliminated as the cause of the observed inhibitory effects.  相似文献   

20.
This paper describes a new theoretical model for the response of cells to radiation. This model is based on the existence of a lesion interaction mechanism in the cell, along with processes of recovery and repair that are able to repair the damage produced by radiation in the cells. Such a mechanism makes the cells evolve from a sublethal state to a normal one. Repair and recovery are not instantaneous, but are produced over an average period that we suppose is represented by an exponential function. The probability of cellular recovery and repair is also affected by radiation. These mechanisms become less probable as the dose administered to the cell increases (repair saturation mechanism). This model is suitable for instantaneous doses as well as for arbitrary dose rates. Results obtained from the model for normal tissues and low doses are approximately equal to those obtained by the linear-quadratic model or by the incomplete repair model. The model yields a survival curve with an exponential tail for high doses and for long periods of irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号