首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
Cell–cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted BeWo cell fusion. CNN3 at the cytoplasmic face of cytoskeleton was dislocated from F-actin with forskolin treatment and diffused into the cytoplasm in a phosphorylation-dependent manner. Phosphorylation sites were located at Ser293/296 in the C-terminal region, and deletion of this region or site-specific disruption of Ser293/296 suppressed syncytium formation. These CNN3 mutants were colocalized with F-actin and remained there after forskolin treatment, suggesting that dissociation of CNN3 from F-actin is modulated by the phosphorylation status of the C-terminal region unique to CNN3 in the CNN family proteins. The mutant missing these phosphorylation sites displayed a dominant negative effect on cell fusion, while replacement of Ser293/296 with aspartic acid enhanced syncytium formation. These results indicated that CNN3 regulates actin cytoskeleton rearrangement which is required for the plasma membranes of trophoblasts to become fusion competent.  相似文献   

4.
The cadherins play key roles in the formation and organization of the mammalian placenta by mediating cellular interactions and the terminal differentiation of trophoblastic cells. Although cadherin function is regulated by the cytoplasmic proteins, known as the catenins, the identity and expression pattern(s) of the catenins present in the trophoblastic cells of the human placenta have not been characterized. In these studies, we have determined that alpha-, beta-, gamma-catenin, and p120(ctn) expression levels are high in villous cytotrophoblasts isolated from the human term placenta but decline as these cells undergo aggregation and fusion to form syncytium with time in culture. In contrast, the expression levels of these four catenin subtypes remained constant in non-fusing JEG-3 choriocarcinoma cells at all of the time points examined in these studies. alpha-, beta-, gamma-catenin, and p120(ctn) expression was further immunolocalized to the mononucleate cells present in these two trophoblastic cell cultures. Similarly, intense immunostaining for all four catenins was detected in the mononucleate villous cytotrophoblasts of the human first trimester placenta. Collectively, these observations demonstrate that the expression levels of alpha-, beta-, gamma-catenin, and p120(ctn) are tightly regulated during the formation of multinucleated syncytium in vitro and in vivo.  相似文献   

5.
Very few types of normal cells fail entirely to express class I human leukocyte antigens (HLA), and many of those cells (sperm, fetal amnion epithelial cells, and fetal trophoblasts) are related to the process of reproduction. Susceptibility of sperm to modulation of class I antigens has not been examined, but it has recently been demonstrated that amnion cells respond to exposure to IFN-gamma with readily detectable levels of class I antigens. In addition, one of two trophoblast cell lines (BeWo) has been shown to exhibit enhanced expression of class I HLA in response to IFN-gamma. Expression by a second trophoblast cell line (Jar) was not inducible. Findings in the present study included demonstration of IFN-gamma-enhanced class I-specific mRNA synthesis in JEG-3 cells, which are derived from BeWo, and failure of synthesis by Jar cells. Those results eliminated trivial explanations for the preceding findings and confirmed the responsiveness of some but not all cells of trophoblast origin to IFN-gamma. When successful modulating conditions for amnion and malignant trophoblast cells were applied to normal tissues, third trimester term chorionic cytotrophoblasts and first trimester villous syncytial and cytotrophoblasts failed to exhibit class I HLA. Neither malignant nor normal trophoblasts expressed class II HLA under any condition of testing. Failure of induction of HLA expression by normal trophoblasts could not be attributed to either loss of viability by tissue explants or failure of modulating reagents to reach the trophoblasts. The results demonstrate that regulation of expression of histocompatibility antigens by major populations of normal trophoblasts and one of two choriocarcinoma cell lines differs markedly from that of other fetal and adult cells. Uncommon regulatory mechanisms may be essential to maintenance of the trophoblast as an immunologically inert barrier between the mother and her antigenically disparate fetus.  相似文献   

6.
The human placenta lacks the enzyme 17-hydroxylase/17-20-lyase, and is thus unable to convert cholesterol into estrogens. Therefore estrogen synthesis of trophoblast cells depends on the supply of precursors such as dehydroepiandrosterone-3-sulfate (DHEA-S) and 16-hydroxy-dehydroepiandrosterone-3-sulfate by maternal and fetal blood. To investigate the cellular internalisation of these anionic hydrophilic precursors, the uptake of [3H]-/[35S]-DHEA-S and [3H]-taurocholate by isolated cytotrophoblasts, cells of choriocarcinoma cell lines (JEG-3, BeWo, Jar), BHK and BHK cells transfected with human sterylsulfatase-cDNA (BHK-STS cells) was studied. Furthermore, the activity of sterylsulfatase of these cells in suspension and in corresponding cell homogenate was measured.

During the first 5 min of incubation with [3H]-DHEA-S or [35S]-DHEA-S, radioactivity of cytotrophoblasts increased significantly, while radioactivity of JEG-3, Jar, BHK and BHK-STS cells did not increase. Radioactivity of BeWo cells increased slightly. For all cell types, there was no significant difference for uptake of either substrate. During incubation with [3H]-taurocholate, radioactivity of cytotrophoblasts did not increase. Sterylsulfatase activity of cytotrophoblast homogenate was significantly lower than that of cytotrophoblast suspension. Sterylsulfatase activity of BHK-STS, JEG-3 or BeWo cell homogenate was significantly higher than that of the corresponding cell suspension. In BHK and Jar cells sterylsulfatase activity was not detectable.

Cytotrophoblasts take up DHEA-S without prior hydrolysis. BHK, BHK-STS, JEG-3, and Jar cells do not take up and BeWo cells slowly take up DHEA-S. In cytotrophoblasts extracellular DHEA-S rapidly gains access to intracellular sterylsulfatase, while in choriocarcinoma and BHK-STS cells access of DHEA-S to sterylsulfatase is limited. Our results indicate, that uptake by cytotrophoblasts is mediated by a carrier which is not expressed in choriocarcinoma or BHK cells and which is different from the known taurocholate-transporting organic anion transporting polypetides.  相似文献   


7.
ABSTRACT

Galectin-1 (gal-1), a member of the mammalian β-galactoside-binding proteins, exerts biological effects by recognition of glycan ligands, including those involved in cell adhesion and growth regulation. In previous studies, we demonstrated that gal-1 induces cell differentiation processes on the membrane of choriocarcinoma cells BeWo, including the receptor tyrosine kinases (RTKs) REarranged during Transfection (RET), Janus Kinase 2 (JAK2) and Vascular endothelial growth factor receptor 3 (VEGFR3). Furthermore, Mitogen-Activated Protein Kinases (MAPK) and serine/threonine kinases were phosphorylated by gal-1. In addition, gal-1 in trophoblast cells in vitro induced syncytium formation especially after concentration dependent stimulation of the cells with this galectin. This is in contrast to MAPK-inhibitor U0126 that reduced syncytium formation of BeWo cells. The aim of this study was to analyze the syncytium formation abilities of BeWo cells that were gal-1 silenced. We found a significantly reduced syncytium formation rate in gal-1 silenced BeWo cells. In addition, these cells show a different miRNA expression profile. In summary, we found that gal-1 is a major trigger for fusion processes in BeWo cells. This function is accompanied by different regulation of miRNA synthesis in the BeWo cell culture model.  相似文献   

8.
Extravillous cytotrophoblasts are specialised epithelial cells of the placenta that proliferate or invade the maternal decidua. Little is known about the mechanisms that regulate these processes. Here the effects of several insulin and insulin-like growth factor-I (IGF-I) doses, either singly or in synergy with serum, on human chorionic gonadotropin-beta (hCG-beta) secretion (RIA), proliferation (cell counting, cyclin B(1) levels) and invasion [Matrigel invasion assay, secretion of matrix metalloproteinases (MMP) 2 and 9] were investigated. The choriocarcinoma cell lines BeWo, JAR and JEG-3 served as models for first trimester human trophoblasts. Both growth factors altered hCG-beta secretion and proliferation dependent on the cell line. Insulin stimulated proliferation in JAR cells and, to a lesser extent, in JEG-3 cells, and when cultured in serum-free medium, BeWo was not affected. Invasion was not affected although proMMP-2 levels in culture medium were altered under some conditions. A strong synergistic effect with serum was noted. In the presence of serum both growth factors reduced proliferation and invasion in a similar fashion. Since the cell models differ by their degree of differentiation, the data demonstrate that the effects of insulin and IGF-I strongly depend on serum and the degree of differentiation. It can be speculated that IGF-I can take on tasks of insulin in the regulation of trophoblast functions under conditions of insulinopenia.  相似文献   

9.
The human placenta arises from the zygote through single cell intermediates called cytotrophoblasts that in turn give rise to a syncytium. In culture, mononucleated cytotrophoblasts exhibit little, if any, cell division but are converted to multinucleated cells. Choriocarcinoma, the malignant tumor of placenta trophoblast, comprises a mixed population of dividing cellular intermediates that resemble cytotrophoblasts but are less differentiated. Because the choriocarcinoma intermediates arise from dividing cells, the tumor may contain one or more cell types in abundance not present in the population of isolated placental cells. To study placental differentiation through cell-cell interaction, choriocarcinoma cell lines were co-cultured with placenta-derived cytotrophoblasts, and placental hormone biosynthesis, as a marker of differentiation was examined. We reasoned that intermediates formed by the tumor might interact with and complement those intermediates in the placenta-derived cytotrophoblast population. Co-culturing either the JAr or JEG choriocarcinoma cell lines with cytotrophoblasts elevated the synthesis of the chorionic gonadotropin alpha and beta subunits 10-20 fold, and human placental lactogen 5-fold. The effect was specific for these trophoblast-derived cells, since comparable quantities of Chinese hamster ovary or HeLa cells did not affect the placental cytotrophoblast culture. Further experiments suggested that the source of enhanced synthesis was the cytotrophoblasts. We propose that an interaction between cytotrophoblasts and choriocarcinoma cells occurs, which results in an increased number of differentiating cytotrophoblasts. Such co-cultures may represent a model system for examining choriocarcinoma cell interaction with normal cells, a process known to occur in vivo. The data are also consistent with the hypothesis that the regulated chorionic gonadotropin production in the placenta is determined by interaction among trophoblast cells at different stages of differentiation.  相似文献   

10.
The human trophoblast secretes endothelin-1 (ET-1) and expresses ET receptors. The present study tested whether the transformed BeWo, JAR and JEG-3 choriocarcinoma cells: (1) secrete endothelin-1 (ET-1); (2) express both ET-A and ET-B receptor subtypes; and (3) have the potential to allow for autologous regulation of ET-receptor proteins. The cells were cultured for 24/48 h with or without 10% FCS and, in experiments on receptor regulation, with ET-1 (5-20 nM and 10 microM). ET-1 secretion was measured by RIA and receptor levels by immunoblotting. All cell types secreted ET-1 albeit at different levels and sensitivity to FCS. All cell lines expressed both ET-A (JEG-3>BeWo=JAR) and ET-B (JEG-3=JAR>BeWo) receptor subtypes, which could be up- and downregulated depending on ET-1 concentration, culture time and FCS presence. It is concluded that BeWo, JAR and JEG-3 choriocarcinoma cells secrete ET-1 and express both ET-A and ET-B receptor subtypes. The receptor levels can be regulated by ET-1. This provides the molecular basis for an autocrine system with the potential of autologous regulation of yet unidentified ET-1-induced functions.  相似文献   

11.
12.
The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.  相似文献   

13.
FURIN is a pro-protein convertase previously shown to be important for placental syncytialisation (Zhou et al. [1]), a process of cell fusion whereby placental cytotrophoblast cells fuse to form a multinucleated syncytium. This finding has been broadly accepted however, we have evidence suggesting the contrary. Spontaneously syncytialising term primary human trophoblast cells and BeWo choriocarcinoma cells were treated with either FURIN siRNA or negative control siRNA or the protease inhibitor, DEC-RVKR-CMK, or vehicle. Cells were then left to either spontaneously syncytialise (primary trophoblasts) or were induced to syncytialise with forskolin (BeWo). Effects on syncytialisation were measured by determining human chorionic gonadotrophin secretion and E-cadherin protein levels. We showed that FURIN is not important for syncytialisation in either cell type. However, in primary trophoblasts another protease also inhibited by DEC-RVKR-CMK, may be involved. Our results directly contrast with those published by Zhou et al. Zhou et al. however, used first trimester villous explants to study syncytialisation, and we used term primary trophoblasts. Therefore, we suggest that FURIN may be involved in syncytialisation of first trimester trophoblasts, but not term trophoblasts. What is more concerning is that our results using BeWo cells do not agree with their results, even though for the most part, we used the same experimental design. It is unclear why these experiments yielded different results, however we wanted to draw attention to simple differences in measuring syncytialisation or flaws in method reporting (including omission of cell line source and passage numbers, siRNA concentration and protein molecular weights) and choice of immunoblot loading controls, that could impact on experimental outcomes. Our study shows that careful reporting of methods by authors and thorough scrutiny by referees are vital. Furthermore, a universal benchmark for measuring syncytialisation is required so that various studies of syncytialisation can be validated.Subject terms: Proteases, Differentiation  相似文献   

14.
During human pregnancy, the trophoblast develops from differentiation of cytotrophoblast cells into an endocrine active syncytiotrophoblast. In culture, isolated mononuclear cytotrophoblasts aggregate and then fuse to form a syncytium, reproducing the in vivo process. In this study, we examined the effect of low oxygen tension (approximately 9%, hypoxia) compared to standard conditions (approximately 19% oxygen, normoxia) on these cellular events. Under hypoxia, syncytial formation was less frequently observed, cell staining and electron microscopy revealed that cytotrophoblasts remain aggregated, with a positive proliferative cell nuclear antigen (PCNA) immunostaining. Desmoplakin and E-cadherin, both known to disappear with cytotrophoblast fusion, showed persistent expression in hypoxic cells after 3 days of culture. In contrast, the expression of actin and ezrin, two cytoskeletal proteins, was unchanged. hCG secretion and hPL expression were both decreased in hypoxic cells, reflecting a reduced syncytial formation. Thus, on day 3, the mean values for hCG secretion were 1,100 ± 155 and 289 ± 26 mlU/mL in normoxic and hypoxic conditions, respectively. The reduced cell fusion process as well as hCG secretion and hPL expression under hypoxia were reversed by reoxygenation of the cells. We conclude that under hypoxia, the formation of functional syncytiotrophoblast is impaired due to a defect in the cytotrophoblast fusion process. This may explain the observation of a higher number of cytotrophoblast cells and a reduced syncytial layer in placentas of some pathological pregnancies. © 1996 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
18.
The syncytial trophoblast of the human placenta forms by the fusion of mononuclear cytotrophoblast cells. Cytotrophoblast cells only fuse with other trophoblastic cells, indicating a specificity to this interaction. To explore the cellular aggregation which precedes fusion, we examined the association of cytotrophoblast cells isolated from term placentae and JEG-3 choriocarcinoma cells, a cytotrophoblast-like cell line, in suspension culture. Cytotrophoblast cells were isolated by dispersion of chorionic villi in trypsin-DNase in Ca2+/Mg2(+)-free medium. JEG-3 cells were released from culture flasks by trypsinization in Versene-EDTA buffer. In suspension culture, each cell type aggregated forming tissue-like masses over a 24-hr period. Transmission electron microscope analysis demonstrated the formation of numerous desmosomes between the aggregated cells. In outgrowth culture, the aggregates created in suspension were maintained as microvilli-covered multicellular structures with hollow cores. The extent of aggregation was dependent upon the concentration of cells in the incubations with greater aggregation occurring with higher cell densities. Aggregation of both cytotrophoblast cells and JEG-3 cells progressed rapidly during the initial 10 hr of incubation and then continued at a slower rate. Aggregation took place in serum-containing and serum-free medium, but was impeded in Ca2+/Mg2(+)-free medium. Incubation of JEG-3 and cytotrophoblast cells in the presence of the protein synthesis inhibitor, cycloheximide, prevented aggregation, whereas the inhibitor of N-linked glycosylation, tunicamycin, did not. The inhibitor of RNA synthesis, actinomycin D, had no effect on the aggregation of the cells during the initial 6 hr of aggregation. These findings suggest that trypsin treatment in Ca2+/Mg2(+)-poor medium removed a protein(s) from the trophoblast cell surface which must be resynthesized for cell-cell association to take place.  相似文献   

19.
Human ADAM19 is a recently identified member of the ADAM family. It is highly expressed in human placentas, but its dynamic change and function at the human feto-maternal interface during placenta-tion remain to be elucidated. In this present study, the spatial and temporal expression and cellular localization of ADAM19 in normal human placentas were first demonstrated, and the effects of ADAM19 on trophoblast cell adhesion and invasion were further investigated by using a human choriocarcinoma cell line (JEG-3) as an in vitro model. The data demonstrated that ADAM19 was widely distributed in villous cytotrophoblast cells, syncytiotrophoblast cells, column trophoblasts, and villous capillary endothelial cells during early pregnancy. The mRNA and protein level of ADAM19 in placentas was high at gestational weeks 8—9, but diminished significantly at mid- and term pregnancy. In JEG-3 cells, the overexpression of ADAM19 led to diminished cell invasion, as well as increases in cell adhesiveness and the expression of E-cadherin, with no changes in b-catenin expression observed. These data in-dicate that ADAM19 may participate in the coordinated regulation of human trophoblast cell behaviors during the process of placentation.  相似文献   

20.
Trophoblast cells express a singular miRNA expression profile which varies during pregnancy and whose alteration may be associated with pregnancy complications. miR-21, a widely known oncomir, is highly expressed in human placenta but its role in regulating trophoblast cells remains unclear. The aim of this study was to investigate miR-21 functions and targets in HTR-8/SVneo immortalized trophoblast and JEG-3 choriocarcinoma cells, which are trophoblast cell models that differ in their cellular origin. Cells were transfected with miR-21-antagomir, -mimic or their respective controls. Following, cell proliferation (BrdU), migration (Transwell and scratch wound-healing assays), invasion (Matrigel assays) and apoptosis (flow cytometry, TUNEL assay and Western blotting) were assessed. Expression of the potential miR-21 targets phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) were analyzed by Western blotting. Inhibition of miR-21 decreased cell proliferation, migration, and invasion in JEG-3 and HTR-8/SVneo cells and additionally, induced apoptosis in JEG-3 cells. Silencing of miR-21 enhanced PDCD4 expression only in JEG-3 cells, and PTEN expression only in HTR-8/SVneo cells. Inhibition of miR-21 significantly increased phosphorylation of AKT in HTR-8/SVneo cells. In conclusion, miR-21 has cell-specific targets depending upon the origin of trophoblastic cells. Furthermore, miR-21 regulates major cellular processes including cell growth, migration, invasion and apoptosis suggesting that its impairment may lead to placental disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号