首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
Migratory animals can alter ecosystem function via the provision of nutrient subsidies. These subsidies are heterogeneous in space and time, which may create hot spots or hot moments in biogeochemical transformations, in turn altering the ecosystem effect of the subsidy by changing the form of the nutrients. Annual migrations of Pacific salmon (Oncorhynchus spp.) transport nutrients from the marine environment to their natal freshwater ecosystems. Salmon subsidies provide high quality nutrients (e.g., nitrogen, phosphorus, carbon) that may also be large in quantity where salmon migrations are near historic levels. We hypothesized that the nutrient subsidy provided via the excretion of ammonium (NH4 +) by live salmon would stimulate microbially mediated nitrification rates in stream sediments and increase streamwater nitrate (NO3 ?) concentrations. We quantified sediment nitrification in seven streams in Southeast Alaska before and during the salmon run in 2007 and 2008. Nitrification rates increased 3-fold from before to during the salmon run (mean ± SE = 0.07 ± 0.01 to 0.24 ± 0.02 mgN gAFDM?1 d?1, respectively). The variation in nitrification was explained by both streamwater and exchangeable NH4 + concentrations (R 2 = 0.50 and 0.71, respectively), which were low before salmon and increased relative to the size of the salmon run. To experimentally test the effect of salmon subsidies on nitrification rates, we staked senesced salmon carcasses on stream sediments for 3 weeks during the salmon run and then measured nitrification rates directly under the carcasses. Sediment nitrification was 2–5 times higher under the carcasses compared to nearby sediments without the direct carcass influence. Our results confirm that biogeochemical transformations alter the form of salmon-derived nitrogen, representing an overlooked aspect in the dynamics of this subsidy. Therefore, animal-derived nutrient subsidies are not passively retained or exported in recipient ecosystems, but also transformed, thereby influencing the form and incorporation of these nutrient subsidies.  相似文献   

3.
Changes in the isotopic composition (δ13C and δ15N) in biofilm, macro‐invertebrates and resident salmonids were used to characterize temporal dynamics of marine derived nutrients (MDNs) incorporation between stream reaches with and without MDN inputs. Five Atlantic rivers were chosen to represent contrasting MDN subsidies: four rivers with considerable numbers of anadromous fishes; one river with little MDN input. Rainbow smelt Osmerus mordax, alewife Alosa pseudoharengus, sea lamprey Petromyzon marinus and Atlantic salmon Salmo salar, were the primary anadromous species for the sampled rivers. Regardless of the spatial resolution or the pathway of incorporation, annual nutrient pulses from spawning anadromous fishes had a positive effect on isotopic enrichment at all trophic levels (biofilm, 1·2–5·4‰; macro‐invertebrates, 0·0–6·8‰; fish, 1·2–2·6‰). Community‐wide niche space shifted toward the marine‐nutrient source, but the total ecological niche space did not always increase with MDN inputs. The time‐integrated marine‐nutrient resource contribution to the diet of S. salar parr and brook trout Salvelinus fontinalis ranged between 16·3 and 36·0% during anadromous fish‐spawning periods. The high degree of spatio‐temporal heterogeneity in marine‐nutrient subsidies from anadromous fishes lead to both direct and indirect pathways of MDN incorporation into stream food webs. This suggests that organisms at many trophic levels derive a substantial proportion of their energy from marine resources when present. The current trend of declining anadromous fish populations means fewer nutrient‐rich marine subsidies being delivered to rivers, diminishing the ability to sustain elevated riverine productivity.  相似文献   

4.
We tested the hypothesis that the carcasses of anadromous Pacific salmon (Oncorhynchus spp.) constitute a significant source of nutrients in the nutrient-poor freshwaters where these fish migrate, spawn, senesce, and die. In a 110 m-long stream reach in Southeast Alaska, we retained nearly 3000 salmon carcasses and compared streamwater nitrogen (N), phosphorus (P), and the biomass of benthic biofilm in this reach with an upstream reference reach. The study spanned 5 months, bracketed the entire salmon run, and encompassed significant seasonal variation in abiotic stream conditions. Concentrations of dissolved and particulate N and P followed distinctly unimodal patterns through time, which tracked the abundance of live salmon, and we observed strong predictive relationships between live-salmon abundance and streamwater-nutrient concentrations. In contrast, we did not observe clear relationships between salmon carcasses and streamwater nutrients. Biofilm biomass within our study reaches seemed to more closely track the abundance of live salmon than the abundance of carcasses. The experimental retention of carcasses had a minor or undetectable influence on nutrient concentrations and biofilm within the study reach as compared to the reference reach. We conclude that physical factors such as temperature, discharge, nutrient limitation, and irradiance vary seasonally in ways that maximize the influence of nutrients provisioned by live salmon and minimize the influence of carcass-derived nutrients on the aspects of stream ecosystems that we examined. Overall, our results promote a new perspective on the ecological role of salmon in freshwaters, and contribute to a more mechanistic understanding of how migratory fishes can influence aquatic ecosystems.  相似文献   

5.
1. Pacific salmon and steelhead once contributed large amounts of marine‐derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine‐derived nutrients have been reduced or eliminated. 2. We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash‐free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA. 3. Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (δ15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables. 4. Our results suggest that SCA addition successfully increased periphyton and macroinvertebrate biomass with no detectable response in streamwater nutrient concentrations. Correspondingly, no change in nutrient limitation status was detected based on dissolved inorganic nitrogen to soluble reactive phosphorus ratios (DIN/SRP) and nutrient‐diffusing substrata experiments. Salmon carcass analogues appear to increase freshwater productivity. 5. Salmon carcass analogues represent a pathogen‐free nutrient enhancement tool that mimics natural trophic transfer pathways, can be manufactured using recycled fish products, and is easily transported; however, salmon carcass analogues should not be viewed as a replacement for naturally spawning salmon and the important ecological processes they provide.  相似文献   

6.
7.
  1. Anadromous fish transport marine-derived nutrients to freshwaters during spawning migrations with potential implications for stream food webs. While many studies have explored the role of marine-derived nutrients instream ecosystems (particularly via Pacific salmonids [Oncorhynchus spp.]), relatively few have examined the spatial distribution and patchiness of non-salmonid fish carcasses or rates of transport to the riparian zone.
  2. We radio-tagged and released 144 mature Pacific lamprey (Entosphenus tridentatus) prior to spawning and tracked the fate of post-spawn carcasses in two inland Columbia River basin streams to characterise spatial distribution of carcasses and marine-derived nutrient deposition. We found that 27 and 40% of lamprey that could be assigned a fate were moved into the riparian zone adjacent to stream segments exhibiting higher velocity conditions with larger substrates. Conversely, lamprey with instream fates were associated with depositional microhabitats and woody debris dams. Estimated carcass loading rates varied by more than an order of magnitude among habitats. These patterns probably reflect a combination of processes influencing the likelihood of carcass removal (e.g. by predators or scavengers, or stranding) and factors affecting the distribution of carcasses remaining within the stream.
  3. Our results demonstrate substantial transport of lamprey carcasses across the stream-riparian ecotone and a non-random distribution of carcasses within streams, patterns which probably influence how resources enter stream and riparian food webs. More broadly, the results suggest local and landscape-scale hydrogeomorphic factors, along with species-specific traits and phenology, affect the distribution and potential roles of fish carrion in stream food webs.
  相似文献   

8.
1. Elevated allochthonous inputs of nutrients and sediments to aquatic ecosystems are associated with eutrophication and sedimentation. Reservoirs receive substantial subsidies of nutrients and sediments from catchments due to their large catchment : lake area ratios. We examined the effect of elevated subsidies of sediments and/or dissolved nutrients on the success (survival, growth, biomass and condition factor) of larval gizzard shad (Dorosoma cepedianum), a widespread and dominant omnivorous fish in reservoir ecosystems. 2. We simulated allochthonous agricultural subsides by manipulating dissolved nutrients and sediment inputs in a 2 × 2 factorial design in experimental mesocosms. We predicted that larval fish success would be greater under elevated nutrients. However, we propose two alternative hypotheses with respect to the overall effect of allochthonous sediment inputs. If sediment inputs negatively affect larval gizzard feeding success, larval success would be highest when only nutrients are added and lowest when only sediments are added (+N > +N+S ≥ C > +S). If high turbidity enhances larval foraging activity (due to greater contrast between prey and background), we predict that larval success would be highest when both subsidy types (nutrients and sediment) are elevated, intermediate when either nutrients or sediments are added and the lowest when no subsidies are added (+N+S > +N ≥ +S > C). 3. Our results indicate that elevated nutrient and sediment conditions enhanced larval gizzard shad biomass, but the overall nutrient addition effect was greater than the sediment addition effect (+N ~ +N+S > +S > C). We observed differential effects of nutrient and sediment inputs on larval survival, growth and condition factors. 4. The enhancement of fish biomass in elevated nutrients (+N, +N+S) relative to control conditions was associated with improved gizzard shad survival and not greater growth. The enhancement of fish biomass in the elevated sediment treatment (+S) relative to the control conditions was caused by an increase in survival that more than compensated for a negative effect of sediment addition on growth. 5. Our findings support the recommendation that reservoir management practices must consider the links between land use practices and food web dynamics. Our results suggest that reduction of subsidies of nutrients and sediments to productive reservoirs would decrease survival of larval gizzard shad due to lower food availability.  相似文献   

9.
Hood JM  Vanni MJ  Flecker AS 《Oecologia》2005,146(2):247-257
In ecosystems where excretion by fish is a major flux of nutrients, the nitrogen (N) to phosphorus (P) ratio released by fish can be important in shaping patterns of algal biomass, community composition, primary production, and nutrient limitation. Demand for N and P as well as energy influences N/P excretion ratios and has broad implications in ecosystems where nutrient recycling by fishes is substantial. Bioenergetics and stoichiometric models predict that natural fish populations are generally energy-limited and therefore N/P recycling by fishes is relatively invariant. Yet, the potential for P limitation of growth has not been examined in herbivorous fishes, which are common in many aquatic habitats. We examined N/P excretion ratios and P demand in two P-rich herbivorous catfishes of the family Loricariidae, Ancistrus triradiatus (hereafter Ancistrus) and Chaetostoma milesi (hereafter Chaetostoma). Both fishes are common grazers in the Andean piedmont region of Venezuela where we conducted this study. Mass balance (MB) models indicate that these fishes have a high P demand. In fact, our Ancistrus’ P MB model predicted negative P excretion rates, indicating that Ancistrus did not consume enough P to meet its P demand for growth. Direct measurement of excretion rates showed positive, but very low P excretion rates and high N/P excretion ratios for both taxa. To obtain measured P excretion rates of Ancistrus from the MB model, gross growth efficiency must be reduced by 90%. Our results suggest that growth rates of both of these herbivorous and P-rich fish are likely P-limited. If P limitation of growth is common among herbivorous fish populations, herbivorous fishes recycle likely at high N/P ratios and act to diminish the quality of their food.  相似文献   

10.
Energy and nutrient subsidies transported across ecosystem boundaries are increasingly appreciated as key drivers of consumer-resource dynamics. As purveyors of pulsed marine-derived nutrients (MDN), spawning salmon are one such cross-ecosystem subsidy to freshwaters connected to the north Pacific. We examined how salmon carcasses influenced detrital processing in an oligotrophic stream. Experimental manipulations of MDN inputs revealed that salmon carcasses indirectly reduced detrital processing in streams through temporarily decoupling the detrital resource-consumer relationship, in which detrital consumers shifted their diet to the high-nutrient resource, i.e. salmon carcasses. The average decomposition rate of alder leaves with salmon carcass addition was significantly lower than that without the carcass, which was associated with lower abundance and biomass of detritivorous Trichoptera on the carcass-treated leaves. There were generally larger in size Trichopteran detritivores on the carcasses than on leaves. These results imply that cross-boundary MDN subsidies indirectly retard the ecosystem processing of leaf litter within the short term, but may enhance those food-limited detritivorous consumers. Because unproductive freshwaters in the Pacific northwest are highly dependent upon the organic matter inputs from surrounding forests, this novel finding has implications for determining conservation and management strategies of salmon-related aquatic ecosystems, in terms of salmon habitat protection and fisheries exploitation.  相似文献   

11.
The upstream migration, spawning, and death of anadromous, semelparous Pacific salmon brings nutrients to terrestrial and aquatic communities around the Pacific Rim. Many fishes use these resources but the relationship between fish body size and the reliance on salmon-derived nutrients might follow one of several patterns related to the onset of egg consumption with body size as fish grow, and possible shifts to alternative prey such as fishes as they grow larger still. In this study, these size-dependent hypotheses of marine subsidy use by resident Dolly Varden, Salvelinus malma, were tested using diet and stable isotope analyses. S. malma did not shift abruptly to a reliance on salmon eggs after they became large enough to eat eggs (i.e., no gape limitation). Rather, fish large enough to eat eggs but < 150 mm showed diets that blended salmon nutrients with aquatic insects, likely because they were spatially segregated from the highest concentration of spawning sockeye salmon, Oncorhynchus nerka. From intermediate through the largest sizes observed (150 to > 600 mm long) S. malma received ca. 80 % of their nutrients from salmon (eggs, flesh, and maggots that had scavenged dead salmon) based on diet analysis and stable isotope ratios despite being large enough to consume fish, as many similarly-sized salmonids do in other ecosystems. The few fish sampled in June, prior to the availability of salmon subsidies, had stable isotope signatures that also reflected heavy (ca. 90 %) reliance on marine sources, likely because they had eaten little since the end of the salmon run the previous fall. This apparent avoidance of piscivory in favor a rich yet pulsed marine subsidy highlights the importance of healthy salmon runs for the sake of not only the salmon but resident fishes that consume them.  相似文献   

12.
The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient‐poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N‐ and P‐excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year‐round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic‐terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.  相似文献   

13.
The Beta species complex shows a gradient of life histories from pronounced semelparity (big‐bang reproduction) to pronounced iteroparity (repeated reproduction). Models assume a trade‐off between investment in reproduction and survival. Reproductive effort is thought to increase with decreasing life span, and to be invariable in semelparous plants and susceptible to environmental conditions in iteroparous plants. These assumptions and hypotheses were verified by a greenhouse experiment testing six different life cycles at three contrasting nutrient levels. This study suggests that reproductive effort is negatively correlated with mean life span along the life‐cycle gradient. Unlike semelparous beets, reproductive effort in iteroparous beets is extremely sensitive to nutrient level. Phenotypic correlation between allocation to reproduction and allocation to survival generally appeared significantly negative in the longest‐lived iteroparous beets, nonsignificant in intermediate life histories and obviously positive in semelparous beets (no trade‐off control).  相似文献   

14.
Nutrient recycling is an essential ecosystem process provided by animals. In many aquatic systems, fish have been identified as important in ecosystem nutrient recycling; however, this importance can vary widely between systems. The factors controlling intersystem variation in animal‐mediated nutrient cycling have rarely been examined and as such it remains unclear what impact human landscape changes will have upon these processes. Here we examined rates of nutrient recycling for temperate stream fish assemblages along a gradient of agricultural land use (proportion cropland in the watershed: 1–59%). We quantified nutrient excretion rates of both ammonium–N (NH4+–N) and phosphate (as soluble reactive phosphate: SRP) for fish assemblages at eight streams in southern Ontario, Canada with species‐specific excretion measurements and quantitative assemblage sampling. For both nutrients, total assemblage excretion exhibited a strong positive relationship with riparian cropland. The distance required for fish assemblages to turn over ambient nutrient pools was shorter for cropland systems, indicating that the relative importance of excreted nutrients was higher in these systems. Based on measured uptake rates of NH4+–N in two streams (one higher cropland and one low cropland) and on modeled uptake rates for all streams, the proportion of ecosystem demand that can be satisfied by excretion is generally higher in the more agricultural streams. These patterns appear to be driven largely by disproportionate increases in fish assemblage biomass with increasing stream nutrient concentrations.  相似文献   

15.
1. Human activities affect fish assemblages in a variety of ways. Large‐scale and long‐term disturbances such as in‐stream dredging and mining alter habitat and hydrodynamic characteristics within rivers which can, in turn, alter fish distribution. Habitat heterogeneity is decreased as the natural riffle–pool–run sequences are lost to continuous pools and, as a consequence, lotic species are displaced by lentic species, while generalist and invasive species displace native habitat specialists. Sediment and organic detritus accumulate in deep, dredged reaches and behind dams, disrupting nutrient flow and destroying critical habitat for habitat specialist species. 2. We used standard ecological metrics such as species richness and diversity, as well as stable isotope analysis of δ13C and δ15N, to quantify the differences in fish assemblages sampled by benthic trawls among dredged and undredged sites in the Allegheny River, Pennsylvania, U.S.A. 3. Using mixed‐effects models, we found that total catch, species richness and diversity were negatively correlated with depth (P < 0.05), while species richness, diversity and proportion of species in lithophilic (‘rock‐loving’) reproductive guilds were lower at dredged than at undredged sites (P < 0.05). 4. Principal components analysis and manova revealed that taxa such as darters in brood hider and substratum chooser reproductive guilds were predominantly associated with undredged sites along principal component axis 1 (PC1 and manova P < 0.05), while nest spawners such as catfish and open substratum spawners including suckers were more associated with dredged sites along PC2 (P < 0.05). 5. Stable isotope analysis of δ13C and δ15N revealed shifts from reliance on shallow water and benthic‐derived nutrients at undredged sites to reliance on phytoplankton and terrestrial detritus at deep‐water dredged sites. Relative trophic positions were also lower at dredged sites for many species; loss of benthic nutrient pathways associated with depth and dredging history is hypothesised. 6. The combination of ecological metrics and stable isotope analysis thus shows how anthropogenic habitat loss caused by gravel dredging can decrease benthic fish abundance and diversity, and that species in substratum‐specific reproductive guilds are at particular risk. The effects of dredging also manifest by altering resource use and nutrient pathways within food webs. Management and conservation decisions should therefore consider the protection of relatively shallow areas with suitable substratum for spawning for the protection of native fishes.  相似文献   

16.
Little research has been conducted on effects of iteroparous anadromous fishes on Arctic lakes. We investigated trophic ecology, fish growth, and food web structure in six lakes located in Nunavut, Canada; three lakes contained anadromous Arctic charr (Salvelinus alpinus) whereas three lakes did not contain Arctic charr. All lakes contained forage fishes and lake trout (Salvelinus namaycush; top predator). Isotope ratios (δ13C, δ15N) of fishes and invertebrates did not differ between lakes with and without anadromous Arctic charr; if anadromous Arctic charr deliver marine-derived nutrients and/or organic matter to freshwater lakes, these inputs could not be detected with δ13C and/or δ15N. Lake trout carbon (C):nitrogen (N) and condition were significantly higher in lakes with Arctic charr (C:N = 3.42, K = 1.1) than in lakes without Arctic charr (C:N = 3.17, K = 0.99), however, and ninespine stickleback (Pungitius pungitius) condition was significantly lower in lakes with Arctic charr (K = 0.58) than in lakes without Arctic charr (K = 0.64). Isotope data indicated that pre-smolt and resident Arctic charr may be prey for lake trout and compete with ninespine stickleback. Linear distance metrics applied to isotope data showed that food webs were more compact and isotopically redundant in lakes where Arctic charr were present. Despite this, lake trout populations in lakes with Arctic charr occupied a larger isotope space and showed greater inter-individual isotope differences. Anadromous Arctic charr appear to affect ecology and feeding of sympatric freshwater species, but effects are more subtle than those seen for semelparous anadromous species.  相似文献   

17.
Shape variation in a benthic stream fish across flow regimes   总被引:1,自引:0,他引:1  
Evolution of fish body shapes in flowing and non-flowing waters have been examined for several species. Flowing water can select for fish body shapes that increase steady swimming efficiency, whereas non-flowing water can favor shapes that increase unsteady swimming efficiency. Benthic stream fishes often use areas near the substrate that exhibit reduced or turbulent flow, thus it is unclear which swimming forms would be favored in such environments, and how shape might change across flow regimes. To test the relationship between fish body shape and flow regime in a benthic stream fish, we used geometric morphometric techniques to characterize lateral body shape in mountain sucker (Catostomus platyrhynchus) across flow rates, using stream gradient as an indicator of stream flow. Mountain suckers from low-flow environments were more streamlined, consistent with steady swimming body shapes, whereas mountain suckers from high flows had deeper bodies, consistent with unsteady swimming body shapes. In addition, smaller individuals tended to have more robust body shapes. These patterns are opposite to those predicted for stream fishes in the mid-water column. The benthic stream environment represents a distinct selective environment for fish shape that does not appear to conform to the simple dichotomy of flowing versus non-flowing water.  相似文献   

18.
  1. Drying intermittent stream networks often have permanent water refuges that are important for recolonisation. These habitats may be hotspots for interactions between fishes and invertebrates as they become isolated, but densities and diversity of fishes in these refuges can be highly variable across time and space.
  2. Insect emergence from streams provides energy and nutrient subsidies to riparian habitats. The magnitude of such subsidies may be influenced by in-stream predators such as fishes.
  3. We examined whether benthic macroinvertebrate communities, emerging adult insects, and algal biomass in permanent grassland stream pools differed among sites with naturally varying densities of fishes. We also manipulated fish densities in a mesocosm experiment to address how fishes might affect colonisation during recovery from hydrologic disturbance.
  4. Fish biomass had a negative impact on invertebrate abundance, but not biomass or taxa richness, in natural pools. Total fish biomass was not correlated with total insect emergence in natural pools, but orangethroat darter (Etheostoma spectabile) biomass was inversely correlated with emerging Chironomidae biomass and individual midge body size. The interaction in our models between predatory fish biomass and date suggested that fishes may also delay insect emergence from natural pools, altering the timing of aquatic–terrestrial subsidies.
  5. There was an increase over time in algal biomass (chlorophyll-a) in mesocosms, but this did not differ among fish density treatments. Regardless, fish presence in mesocosms reduced the abundance of colonising insects and total invertebrate biomass. Mesocosm invertebrate communities in treatments without fishes were characterised by more Chironomidae, Culicidae, and Corduliidae.
  6. Results suggest that fishes influence invertebrates in habitats that represent important refuges during hydrologic disturbance, hot spots for subsidy exports to riparian food webs, and source areas for colonists during recovery from hydrologic disturbance. Fish effects in these systems include decreasing invertebrate abundance, shifting community structure, and altering patterns of invertebrate emergence and colonisation.
  相似文献   

19.
The direct and indirect regulation of primary productivity has been well established in autotrophic‐based ecosystems; however, less is known about the processes affecting decomposers in detrital‐based ecosystems. Because, small headwater, woodland streams are a dominate feature in most ecosystems and are tightly linked to terrestrial detritus, understanding decomposer‐mediated functions in these systems is critical for understanding carbon processes across the landscape. In this light, we conducted a microcosm and mesocosm experiment to test the direct and indirect food web effects on decomposers in small stream ecosystems. The results from the microcosm experiment supported an existing literature, demonstrating that nutrients directly stimulate decomposers and that microbivores directly reduce decomposers. Based on well‐founded food web theory in autotrophic systems, we predicted that fishes from different trophic‐functional guilds would indirectly stimulate decomposers by enhancing dissolved nutrients and by reducing microbivore densities. Our mesocosm experiment partially supported these predictions. Specifically, we found that fishes that consumed mostly terrestrial foods increased decomposers from the bottom–up by enhancing allochthonous nutrient loading into the stream ecosystems. Contrary to our predictions, however, predatory fishes that consume microbivores did not increase decomposers from the top–down. Rather, in streams with the predatory fish species, microbivores increased (rather than decreased) on leaf litter. This may have resulted from an experimental artifact associated with refuge provided by leaf packs. In conclusion, our data demonstrate that decomposers are regulated by similar direct and indirect processes important in autotrophic‐based ecosystems. This provides further evidence that food web processes can regulate leaf decomposition and flux of detrital carbon through ecosystems.  相似文献   

20.
Fujiwara M 《PloS one》2012,7(5):e34556
Fish species are diverse. For example, some exhibit early maturation while others delay maturation, some adopt semelparous reproductive strategies while others are iteroparous, and some are long-lived and others short-lived. The diversity is likely to have profound effects on fish population dynamics, which in turn has implications for fisheries management. In this study, a simple density-dependent stage-structured population model was used to investigate the effect of life history traits on sustainable yield, population resilience, and the coefficient of variation (CV) of the adult abundance. The study showed that semelparous fish can produce very high sustainable yields, near or above 50% of the carrying capacity, whereas long-lived iteroparous fish can produce very low sustainable yields, which are often much less than 10% of the carrying capacity. The difference is not because of different levels of sustainable fishing mortality rate, but because of difference in the sensitivity of the equilibrium abundance to fishing mortality. On the other hand, the resilience of fish stocks increases from delayed maturation to early maturation strategies but remains almost unchanged from semelparous to long-lived iteroparous. The CV of the adult abundance increases with increased fishing mortality, not because more individuals are recruited into the adult stage (as previous speculated), but because the mean abundance is more sensitive to fishing mortality than its standard deviation. The magnitudes of these effects vary depending on the life history strategies of the fish species involved. It is evident that any past high yield of long-lived iteroparous fish is a transient yield level, and future commercial fisheries should focus more on fish that are short-lived (including semelparous species) with high compensatory capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号