首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
We report the frequency of the different diarrheagenic Escherichia coli (DEC) categories isolated from children with acute endemic diarrhea in Salvador, Bahia. The E. coli isolates were investigated by colony blot hybridization with the following genes probes: eae, EAF, bfpA, Stx1, Stx2, ST-Ih, ST-Ip, LT-I, LT-II, INV, and EAEC, as virulence markers to distinguish typical and atypical EPEC, EHEC/STEC, ETEC, EIEC, and EAEC. Seven of the eight categories of DEC were detected. The most frequently isolated was atypical EPEC (10.1%) followed by ETEC (7.5%), and EAEC (4.2%). EHEC, STEC, EIEC, and typical EPEC were each detected once. The strains of ETEC, EAEC, and atypical EPEC belonged to a wide variety of serotypes. The serotypes of the others categories were O26:H11 (EHEC), O21:H21 (STEC), O142:H34 (typical EPEC), and O:H55 (EIEC). We also present the clinical manifestations and other pathogenic species observed in children with DEC. This is the first report of EHEC and STEC in Salvador, and one of the first in Brazil.  相似文献   

2.
Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the flagellin gene (fliC) was performed in 233 strains of enteropathogenic Escherichia coli (EPEC) O serogroups for determining their flagellar antigen (H) status. The serological detection of flagellin is the basis for the H-codes typing system in E. coli. Thus, it is impossible to serotype nonmotile bacteria (i.e. to assign H-codes). Twenty-eight fliC restriction patterns were obtained for motile (H2, H4, H6, H7, H8, H9, H10, H11, H12, H18, H21, H27, H32, H34, H35, H40 and H51) and nonmotile serotypes (H(-)). Each motile serotype was characterized by one or two fliC specific restriction patterns. The only exception was serogroup O128ab, where a common restriction pattern was found for serotypes O128ab:H2 and O128ab:H35, even after digestion with RsaI, AluI and Sau3AI endonucleases. These two serotypes were, however, discriminated by single strand conformation polymorphism (SSCP) analysis of RsaI restriction fragments. Nonmotile strains showed fliC restriction patterns identical to some known H serotypes. The PCR-RFLP analysis of fliC gene proved to be a useful method for identifying the H variants in motile and nonmotile EPEC O serogroups.  相似文献   

3.
Enterohemorrhagic Escherichia coli (EHEC) of serotype O157:H7 has been implicated in food-borne illnesses worldwide. An evolutionary model was proposed in which the highly pathogenic EHEC O157:H7 serotype arose from its ancestor, enteropathogenic E. coli (EPEC) O55:H7 (sorbitol fermenting [SOR(+)] and β-glucuronidase positive [GUD(+)]), through sequential gain of virulence, phenotypic traits, and serotype change. Here we report six draft genomes of strains belonging to this evolutionary model: two EPEC O55:H7 (SOR(+) GUD(+)) strains, two nonmotile EHEC O157:H(-) strains (SOR(+) GUD(+)) containing plasmid pSFO157, one EHEC O157:H7 (SOR(-) GUD(+)) strain, and one O157:H7 strain containing plasmid pSFO157 (SOR(+) GUD(+)).  相似文献   

4.
Genotypic and phenotypic virulence markers of the different categories of diarrheagenic Escherichia coli were investigated in 76 strains of the enteropathogenic E. coli (EPEC) serogroup O125. The most frequent serotype found was O125ac:H21. None of the serotypes behaved as EPEC, i.e. carried the eaeA, bfpA, and EAF DNA sequences simultaneously and presented localized adherence to HeLa cells. All strains of O125ac:H6 were atypical EPEC since they carried eaeA only, and presented an indefinite pattern of adherence. All strains of O125ab:H9, O125ac:H9, O125?:H16, and O125ab:H21 and 79% of the O125ac:H21 strains were enteroaggregative E. coli, since they carried a specific DNA sequence and presented the typical aggregative adherence pattern.  相似文献   

5.
Enteropathogenic Escherichia coli (EPEC) continues to be a leading cause of mortality and morbidity in children around the world. Two EPEC genomes have been fully sequenced: those of EPEC O127:H6 strain E2348/69 (United Kingdom, 1969) and EPEC O55:H7 strain CB9615 (Germany, 2003). The O55:H7 serotype is a recent precursor to the virulent enterohemorrhagic E. coli O157:H7. To explore the diversity of O55:H7 and better understand the clonal evolution of O157:H7, we fully sequenced EPEC O55:H7 strain RM12579 (California, 1974), which was collected 1 year before the first U.S. isolate of O157:H7 was identified in California. Phage-related sequences accounted for nearly all differences between the two O55:H7 strains. Additionally, O55:H7 and O157:H7 strains were tested for the presence and insertion sites of Shiga toxin gene (stx)-containing bacteriophages. Analysis of non-phage-associated genes supported core elements of previous O157:H7 stepwise evolutionary models, whereas phage composition and insertion analyses suggested a key refinement. Specifically, the placement and presence of lambda-like bacteriophages (including those containing stx) should not be considered stable evolutionary markers or be required in placing O55:H7 and O157:H7 strains within the stepwise evolutionary models. Additionally, we suggest that a 10.9-kb region (block 172) previously believed unique to O55:H7 strains can be used to identify early O157:H7 strains. Finally, we defined two subsets of O55:H7 strains that share an as-yet-unobserved or extinct common ancestor with O157:H7 strains. Exploration of O55:H7 diversity improved our understanding of the evolution of E. coli O157:H7 and suggested a key revision to accommodate existing and future configurations of stx-containing bacteriophages into current models.  相似文献   

6.
The study was undertaken to determine the clonal relationship and the genetic diversity among Escherichia coli isolates by comparing a non-motile O157 variant with three O157:H7 EHEC isolates and one O55:H7 enteropathogenic E. coli (EPEC) strain. E. coli strains were characterized by sorbitol phenotype, multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, random amplification polymorphic DNA, and the presence of specific virulence genes (stx, E-hly and LEE genes). Sorbitol fermentation was observed in O157:H- (strain 116I), O55:H7 and O157:H7 (strain GC148) serotypes. stx1 or stx2 and E-hly genes were only detected among O157:H7 isolates. LEE typing revealed specific allele distribution: eaegamma, tirgamma, espAgamma, espBgamma associated with EPEC O55:H7 and EHEC O157:H7 strains (B1/1 and EDL 933), eaealpha, tiralpha, espAalpha, espBalpha related to the 116I O157:H- strain and the GC148 strain presented non-typable LEE sequences. Multilocus enzyme profiles revealed two main clusters associated with specific LEE pathotypes. E. coli strains were discriminated by random amplification of polymorphic DNA-polymerase chain reaction and pulsed-field gel electrophoresis methodologies. The molecular approaches used in this study allowed the determination of the genetic relatedness among E. coli strains as well as the detection of lineage specific group markers.  相似文献   

7.
Aims: To investigate the prevalence of traditional and emerging types of enteropathogenic (EPEC) and enterohaemorrhagic Escherichia coli (EHEC) strains in stool samples from children with diarrhoea and to characterize their virulence genes involved in the attaching and effacing (A/E) phenotype. Methods and Results: Serological and PCR‐based methods were used for detection and isolation of EPEC and EHEC strains from 861 stool samples from diarrhoeic children. Agglutination with traditional EPEC and EHEC O‐group‐specific antisera resulted in detection of 38 strains; 26 of these carried virulence factors of EPEC or EHEC. PCR screening for the eae gene resulted in isolation of 97 strains, five carried genes encoding Shiga toxins (stx), one carried the bfpA gene and 91 were atypical EPEC. The 97 EPEC and EHEC strains were divided into 36 O‐serogroups and 21 H‐types, only nine strains belonged to the traditional EPEC O‐groups O26, O55, O86 and O128. In contrast, EPEC serotypes O28:H28, O51:H49, O115:H38 and O127:H40 were found in multiple cases. Subtyping the virulence factors intimin, Tir and Tir‐cytoskeleton coupling effector protein (TccP)/TccP2 resulted in further classification of 93·8% of the 97 strains. Conclusions: Our findings show a clear advantage of the eae‐PCR over the serological detection method for identification of EPEC and EHEC strains from human patients. Significance and Impact of the Study: Molecular detection by the eae‐PCR followed by serotyping and virutyping is useful for monitoring trends in EPEC and EHEC infections and to discover their possible reservoirs.  相似文献   

8.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

9.
The genetic relationship among the Escherichia coli pathotypes was investigated. We used random amplified polymorphic DNA (RAPD) data for constructing a dendrogram of 73 strains of diarrheagenic E. coli. A phylogenetic tree encompassing 15 serotypes from different pathotypes was constructed using multilocus sequence typing data. Phylogram clusters were used for validating RAPD data on the clonality of enteropathogenic E. coli (EPEC) O serogroup strains. Both analyses showed very similar topologies, characterized by the presence of two major groups: group A includes EPEC H6 and H34 strains and group B contains the other EPEC strains plus all serotypes belonging to atypical EPEC, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). These results confirm the existence of two evolutionary divergent groups in EPEC: one is genetically and serologically very homogeneous whereas the other harbors EPEC and non-EPEC serotypes. The same situation was found for EAEC and EHEC.  相似文献   

10.
The so called enteropathogenic Escherichia coli (EPEC) O serogroups include typical and atypical EPEC, enterohaemorrragic E. coli, enterotoxigenic E. coli, and enteroaggregative E. coli. The aim of this article is to review the composition of each O serogroup and the major serotypes, clones, and additional virulence characteristics of each of these diarrheagenic categories. Their adherence patterns and genetic relationships are also presented. The review is based on the study of 805 strains of serogroups O26, O55, O86, O111, O114, O119, O125, O126, O1127, O128, and O142 most of which isolated in Sao Paulo from children with diarrhea between 1970 and 1990. Since some O serogroups include more than one diarrheagenic category O serogrouping only should be abandoned as a diagnostic method. However serotyping is a reliable method for those serotypes that correspond to clones.  相似文献   

11.
Twenty-three Escherichia coli O26 strains from humans, cattle, sheep, pigs and chicken were investigated for virulence markers and for genetic similarity by pulsed field gel electrophoresis and multi locus sequence typing. Two groups of genetically closely related O26 strains were defined. One group is formed by enteropathogenic (EPEC) and enterohemorrhagic (EHEC) E. coli strains, which do not ferment rhamnose and dulcitol and most of these carry a plasmid encoding enterohemolysin. The other group consists of rhamnose and dulcitol fermenting EPEC strains, which carry plasmids encoding alpha-hemolysin. Multiple species of domestic animals were shown to serve as a reservoir for human pathogenic O26 EPEC and EHEC strains.  相似文献   

12.
Escherichia coli isolates from 217 children in Myanmar with diarrhea were investigated for the presence of virulence genes related to diarrhea by colony hybridization and PCR. The genes examined were lt, stI, stII, stx1, stx2, eae, bfp, pCVD (which is the representative gene of plasmid of pCVD of EAEC), and ial (which is invasion-associated locus of the invasion plasmid found in EIEC). Isolates from 47 of 217 children (21.7%) possessed virulence genes characteristic of diarrheagenic E. coli. No instance was found of co-existence of different E. coli strains with different virulence genes in the same patient. Diarrheagenic E. coli are currently classified into five categories based on their virulence markers: ETEC, EHEC, EPEC, EAEC, and EIEC. Of the 47 isolates examined, 30 were EAEC, 12 were EPEC and 5 were ETEC. Susceptibility tests for antimicrobial agents showed that almost all diarrheagenic isolates were resistant to penicillin, tetracycline and streptomycin. However, the majority of strains were sensitive to cephalexin, nalidixic acid and norfloxacin. In particular, 42 of the 47 isolates were sensitive to norfloxacin, which is a fluoroquinolone. This study shows EAEC and EPEC are responsible for sporadic diarrhea in Myanmar and fluoroquinolones appear to be effective in the treatment of these patients.  相似文献   

13.
Atypical enteropathogenic Escherichia coli (aEPEC) has been associated with infantile diarrhea in many countries. The clonal structure of aEPEC is the object of active investigation but few works have dealt with its genetic relationship with other diarrheagenic E. coli (DEC). This study aimed to evaluate the genetic relationship of aEPEC with other DEC pathotypes. The phylogenetic relationships of DEC strains were evaluated by multilocus sequence typing. Genetic diversity was assessed by pulsed-field gel electrophoresis (PFGE). The phylogram showed that aEPEC strains were distributed in four major phylogenetic groups (A, B1, B2 and D). Cluster I (group B1) contains the majority of the strains and other pathotypes [enteroaggregative, enterotoxigenic and enterohemorrhagic E. coli (EHEC)]; cluster II (group A) also contains enteroaggregative and diffusely adherent E. coli ; cluster III (group B2) has atypical and typical EPEC possessing H6 or H34 antigen; and cluster IV (group D) contains aEPEC O55:H7 strains and EHEC O157:H7 strains. PFGE analysis confirmed that these strains encompass a great genetic diversity. These results indicate that aEPEC clonal groups have a particular genomic background – especially the strains of phylogenetic group B1 – that probably made possible the acquisition and expression of virulence factors derived from non-EPEC pathotypes.  相似文献   

14.
We have characterized the LEE pathogenicity islands (PAIs) of two rabbit-specific strains of enteropathogenic E. coli (REPEC), 83/39 (serotype O15:H-) and 84/110-1 (O103:H2), and have compared them to homologous loci from the human enteropathogenic and enterohaemorrhagic E. coli strains, E2348/69 and EDL933, and another REPEC strain, RDEC-1. All five PAIs contain a 34 kb core region that is highly conserved in gene order and nucleotide sequence. However, the LEE of 83/39 is significantly larger (59 540 basepairs) than those of the human strains, which are less than 44 kb, and has inserted into pheU tRNA. The regions flanking the 34 kb core of 83/39 contain homologues of two putative virulence determinants, efa1/lifA and senA. The LEE of 84/110-1 is approximately 85 kb and is located at pheV tRNA. Its core is almost identical to those of 83/39 and RDEC-1, apart from a larger espF gene, but its flanking regions contain trcA, a putative virulence determinant of EPEC. All three REPEC LEE PAIs contain a gene for an integrase, Int-phe. The LEE PAI of 84/110-1 is also flanked by short direct repeats (representing the 3'-end of pheV tRNA), suggesting that it may be unstable. To investigate this possibility, we constructed a LEE::sacB derivative of 84/110-1 and showed that the PAI was capable of spontaneous deletion. We also showed that Int-phe can mediate site-specific integration of foreign DNA at the pheU tRNA locus of E. coli DH1. Together these results indicate possible mechanisms of mobilization and integration of the LEE PAI.  相似文献   

15.
A Shiga-toxin-producing Escherichia coli (STEC) strain belonging to serotype O104:H4, phylogenetic group B1 and sequence type ST678, with virulence features common to the enteroaggregative E. coli (EAEC) pathotype, was reported as the cause of the recent 2011 outbreak in Germany. The outbreak strain was determined to carry several virulence factors of extraintestinal pathogenic E. coli (ExPEC) and to be resistant to a wide range of antibiotics. There are only a few reports of serotype O104:H4, which is very rare in humans and has never been detected in animals or food. Several research groups obtained the complete genome sequence of isolates of the German outbreak strain as well as the genome sequences of EAEC of serotype O104:H4 strains from Africa. Those findings suggested that horizontal genetic transfer allowed the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli (STEAEC) O104:H4 strain responsible for the outbreak in Germany. Epidemiologic investigations supported a linkage between the outbreaks in Germany and France and traced their origin to fenugreek seeds imported from Africa. However, there has been no isolation of the causative strain O104:H4 from any of the samples of fenugreek seeds analyzed. Following the German outbreak, we conducted a large sampling to analyze the presence of STEC, EAEC, and other types of diarrheagenic E. coli strains in Spanish vegetables. During June and July 2011, 200 vegetable samples from different origins were analyzed. All were negative for the virulent serotype O104:H4 and only one lettuce sample (0.6%) was positive for a STEC strain of serotype O146:H21 (stx1, stx2), considered of low virulence. Despite the single positive case, the hygienic and sanitary quality of Spanish vegetables proved to be quite good. In 195 of the 200 samples (98%), <10 colony-forming units (cfu) of E. coli per gram were detected, and the microbiological levels of all samples were satisfactory (<100 cfu/g). The samples were also negative for other pathotypes of diarrheagenic E. coli (EAEC, ETEC, tEPEC, and EIEC). Consistent with data from other countries, STEC belonging to serotype O157:H7 and other serotypes have been isolated from beef, milk, cheese, and domestic (cattle, sheep, goats) and wild (deer, boar, fox) animals in Spain. Nevertheless, STEC outbreaks in Spain are rare.  相似文献   

16.
Stool specimens of patients with diarrhea or other gastrointestinal alterations who were admitted to Xeral-Calde Hospital (Lugo, Spain) were analyzed for the prevalence of typical and atypical enteropathogenic Escherichia coli (EPEC). Atypical EPEC strains (eae+ bfp-) were detected in 105 (5.2%) of 2015 patients, whereas typical EPEC strains (eae+ bfp+) were identified in only five (0.2%) patients. Atypical EPEC strains were (after Salmonella) the second most frequently recovered enteropathogenic bacteria. In this study, 110 EPEC strains were characterized. The strains belonged to 43 O serogroups and 69 O:H serotypes, including 44 new serotypes not previously reported among human EPEC. However, 29% were of one of three serogroups (O26, O51, and O145) and 33% belonged to eight serotypes (O10:H-, O26:H11, O26:H-, O51:H49, O123:H19, O128:H2, O145:H28, and O145:H-). Only 14 (13%) could be assigned to classical EPEC serotypes. Fifteen intimin types, namely, alpha1 (6 strains), alpha2 (4 strains), beta1 (34 strains), xiR/b2 (6 strains), gamma1 (13 strains), gamma2/q (16 strains), delta/k (5 strains), epsilon1 (9 strains), nuR/e2 (5 strains), zeta (6 strains), iota1 (1 strain), muR/iota2 (1 strain), nuB (1 strain), xiB (1 strain), and o (2 strains), were detected among the 110 EPEC strains, but none of the strains was positive for intimin types mu1, mu2, lambda, or muB. In addition, in atypical EPEC strains of serotypes O10:H-, O84:H-, and O129:H-, two new intimin genes (eae-nuB and eae-o) were identified. These genes showed less than 95% nucleotide sequence identity with existing intimin types. Phylogenetic analysis revealed six groups of closely related intimin genes: (i) alpha1, alpha2, zeta, nuB, and o; (ii) iota1 and muR/iota2; (iii) beta1, xiR/beta2B, delta/beta2O, and kappa; (iv) epsilon1, xiB, eta1,eta2, and nuR/epsilon2; (v) gamma1, muB, gamma2, and theta; and (vi) lambda. These results indicate that atypical EPEC strains belonging to large number of serotypes and with different intimin types might be frequently isolated from human clinical stool samples in Spain.  相似文献   

17.
A novel and functional conjugative transfer system identified in O119:H2 enteropathogenic Escherichia coli (EPEC) strain MB80 by subtractive hybridization is encoded on a large multidrug resistance plasmid, distinct from the well-described EPEC adherence factor (EAF) plasmid. Variants of the MB80 conjugative resistance plasmid were identified in other EPEC strains, including the prototypical O111:NM strain B171, from which the EAF plasmid has been sequenced. This separate large plasmid and the selective advantage that it confers in the antibiotic era have been overlooked because it comigrates with the virulence plasmid on conventional gels.  相似文献   

18.
The prevalence of enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) E. coli strains in stool specimens from asymptomatic human carriers working in the canteens and also in the kitchen and sanitary facilities was evaluated. The E. coli genes coding for the following virulence markers: intimin (eae), enterohaemolysin (hlyA), and verotoxins type I and II (stx1 and stx2) were sought by multiplex PCR assay. E. coli isolates were obtained from 144 stool specimens, 295 swabs taken from kitchen hardware and surrounding facilities, and from 33 meat specimens. Only 66 (8.5%) of total 777 E. coli isolates belonged to O44, O18, O25, O127, O55, O114, O125, and O142 serogroups, the prevalent serogroups in Poland. None of the strains was classified as serogroup O157. The serogroups O44 and O18 were present most often among all typeable strains and their incidence was 51.5% and 25.8% respectively. Among 363 isolates assayed for the presence of the genes encoding virulence markers only 10 isolates (2.8%) carried eae gene. None of the isolates possessing eae gene belonged to the serogroups tested. The hlyA, stx1 and stx2 genes were absent in all E. coli isolates tested.  相似文献   

19.
Escherichia coli A0 34/86 (O83:K24:H31) has been successfully used for prophylactic and therapeutic intestinal colonization of premature and newborn infants, with the aim of preventing nosocomial infections. Although E. coli A0 34/86 was described as a nonpathogenic commensal, partial sequencing revealed that its genome harbours gene clusters highly homologous to virulence determinants of different types of E. coli, including closely linked genes of the alpha-haemolysin operon (hlyCABD) and for the cytotoxic necrotizing factor (cnf1). A haemolysin-deficient mutant (Delta hlyA) of E. coli A0 34/86 was generated and its colonization capacity was determined. The results show that a single dose of the A0 34/86 wild-type or Delta hlyA strains resulted in efficient intestinal colonization of newborn conventional piglets, and that this was still considerable after several weeks. No difference was observed between the wild-type and the mutant strains, showing that haemolysin expression does not contribute to intestinal colonization capacity of E. coli A0 34/86. Safety experiments revealed that survival of colostrum-deprived gnotobiotic newborn piglets was substantially higher upon colonization by the nonhaemolytic strain than following inoculation by its wild-type ancestor. We suggest that the E. coli A0 34/86 Delta hlyA mutant may represent a safer prophylactic and/or immunomodulatory tool with unaffected colonization capacity.  相似文献   

20.
Escherichia coli O157:H7 is, to date, the major E. coli serotype causing food-borne human disease worldwide. Strains of O157 with other H antigens also have been recovered. We analyzed a collection of historic O157 strains (n = 400) isolated in the late 1980s to early 1990s in the United States. Strains were predominantly serotype O157:H7 (55%), and various O157:non-H7 (41%) serotypes were not previously reported regarding their pathogenic potential. Although lacking Shiga toxin (stx) and eae genes, serotypes O157:H1, O157:H2, O157:H11, O157:H42, and O157:H43 carried several virulence factors (iha, terD, and hlyA) also found in virulent serotype E. coli O157:H7. Pulsed-field gel electrophoresis (PFGE) showed the O157 serogroup was diverse, with strains with the same H type clustering together closely. Among non-H7 isolates, serotype O157:H43 was highly prevalent (65%) and carried important enterohemorrhagic E. coli (EHEC) virulence markers (iha, terD, hlyA, and espP). Isolates from two particular H types, H2 and H11, among the most commonly found non-O157 EHEC serotypes (O26:H11, O111:H11, O103:H2/H11, and O45:H2), unexpectedly clustered more closely with O157:H7 than other H types and carried several virulence genes. This suggests an early divergence of the O157 serogroup to clades with different pathogenic potentials. The appearance of important EHEC virulence markers in closely related H types suggests their virulence potential and suggests further monitoring of those serotypes not implicated in severe illness thus far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号