首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genetic characterization of pathogenic isolates of Leishmania was attempted by analysis of the molecular properties of kinetoplast DNA (kDNA) minicircles. Unit minicircle size is not conserved during speciation of Leishmania since the minicircles of strains and clones of L t major are smaller (700 bp) than those found in certain strains of L mexicana ssp (820 bp), L donovani (850 bp) or L t tropica (900 bp). Schizodeme analysis of minicircles reveals a high degree of sequence divergence in kDNA of Leishmania with the degree of microheterogeneity varying between species. This sequence divergence allows the discrimination of species, strains, and clones of Leishmania into schizodemes. Southern blot hybridization experiments reveal that at high stringency overall minicircle sequence homology is conserved among clones and strains of one species (L t major) but not between different species. This property of minicircle DNA permits the use of kDNA probes as a species-specific diagnostic test for the identification of unknown Leishmania isolates. The properties of kDNA from an L t tropica strain LRC-L32 (a “recidiva” organism) are so diverged from those of L t major strains as to support the classification [22,23] of L t tropica and L t major as separate species of Leishmania rather than subspecies of L tropica.  相似文献   

2.
The genomes of the three principle experimental-model species of Kinetoplastida -Trypanosoma brucei brucei, Trypanosoma cruzi and Leishmania major - are now complete, providing both a milestone for trypanosome biology and an opportunity to consider a multitude of questions at the genome level. Of the >40 members of the Ras-like GTPase family in T. brucei, at least 30 are involved in intracellular transport, whereas fewer than eight are likely to have a classical role in signal transduction. There are no true members of the Ras or Rho subfamilies but divergent Ras- or Rho-like GTPases are present, suggesting that signalling mechanisms in trypanosomatids are highly unusual. Comparisons of T. brucei with T. cruzi and L. major indicate a high degree of conservation among the species. These analyses provide a framework for the functional investigation of small-GTPase-mediated signalling processes in trypanosomes.  相似文献   

3.
4.
The successful cultivation of a variety of haemoflagellates in three different liquid media is reported. These media include medium 199, Grace's insect tissue-culture medium and Schneider's drosophila medium, each in combination with 30% (v/v) foetal calf serum. These media were used to cultivate Old and New World species of visceral and cutaneous human Leishmania, as well as Leishmania species isolated from sandflies, rodents, and reptiles. Four strains of Trypanosoma cruzi, an isolate of T. R-angeli and and an isolate of T. lewisi have also been cultivated in these media. One or more of these media have been used to cultivate 121 strains of haemoflagellates, including at least 14 different species (11 Leishmania and 3 Trypanosoma) and many geographic isolates or strains. The Leishmania include L. braziliensis, L. peruviana, L. mexicana, L. tropica, L. donovani, L. chagasi, L. enriettii, L. hertigi, L. hoogstraali, L. adleri, and L. agamae. Using the Schneider's based medium, we have obtained primary isolates of both cutaneous and visceral Leishmania of man and of experimentally infected laboratory rodents and canines. Freeze-dried preparations of the Schneider's based medium that were reconsituted with distilled water after 24 months of storage at ambient temperature have proven to be suitable cultivation media. This feature makes the media valuable field tools. The various species of human Leishmania cultivated in these media have in our experience demonstrated no differences in growth rate, viability after liquid nitrogen preservation, or infectivity for laboratory animals and tissue-culture cells compared with promastigotes derived from blood-agar cultivation.  相似文献   

5.
Parasites belonging to Leishmania braziliensis, Leishmania donovani, Leishmania mexicana complexes and Trypanosoma cruzi (clones 20 and 39) were searched in blood, lesions and strains collected from 28 patients with active cutaneous leishmaniasis and one patient with visceral leishmaniasis. PCR-hybridization with specific probes of Leishmania complexes (L. braziliensis, L. donovani and L. mexicana) and T. cruzi clones was applied to the different DNA samples. Over 29 patients, 8 (27.6%) presented a mixed infection Leishmania complex species, 17 (58.6%) a mixed infection Leishmania-T. cruzi, and 4 (13.8%) a multi Leishmania-T. cruzi infection. Several patients were infected by the two Bolivian major clones 20 and 39 of T. cruzi (44.8%). The L. braziliensis complex was more frequently detected in lesions than in blood and a reverse result was observed for L. mexicana complex. The polymerase chain reaction-hybridization design offers new arguments supporting the idea of an underestimated rate of visceral leishmanisis in Bolivia. Parasites were isolated by culture from the blood of two patients and lesions of 10 patients. The UPGMA (unweighted pair-group method with arithmetic averages) dendrogram computed from Jaccard's distances obtained from 11 isoenzyme loci data confirmed the presence of the three Leishmania complexes and undoubtedly identified human infections by L. (V.) braziliensis, L. (L.) chagasi and L. (L.) mexicana species. Additional evidence of parasite mixtures was visualized through mixed isoenzyme profiles, L. (V.) braziliensis-L. (L.) mexicana and Leishmania spp.-T. cruzi.The epidemiological profile in the studied area appeared more complex than currently known. This is the first report of parasitological evidence of Bolivian patients with trypanosomatidae multi infections and consequences on the diseases' control and patient treatments are discussed.  相似文献   

6.
A comparison of Trypanosoma cruzi water soluble antigens with those of stercorarian and salivarian trypanosomes, and Leishmania using immunoprecipitation in gels and immunoelectrophoresis, with the aid of hyperimmune rabbit serum and heterologous adsorptions showed the following. 1) There is a high complexity of soluble antigens of T. cruzi and T. rangeli. 2) At the intraspecific level our results demonstrated the antigenic stability of T. cruzi when maintained in vitro, and that there was quantitative antigenic consistency of the culture forms of different strains of T. cruzi from diverse geographic and parasite sources. At the interspecific level, the antigenic relationships between T. cruzi and the other Trypanosomatidae were established, as follows: 6/10ths of the antigens are shared by stercorarian species (T. dionisii, T. rangeli); 4/10ths by a salivarian trypanosome (T. brucei); and 3/10ths by Leishmania (L. donovani, L. mexicana). 3) Among the 4/10ths of antigenic components specific to T. cruzi, one component was characterized by its antigenicity and immunogenicity in natural and experimental infections, and in immunization experiments; this component was specific to T. cruzi when compared to the other Trypanosomatidae antigens.  相似文献   

7.
The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-alpha-d-mannose, UDP-alpha-d-N-acetylglucosamine, UDP-alpha-d-glucose, UDP-alpha-galactopyranose, and GDP-beta-l-fucose, were common to all three species; one, UDP-alpha-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-beta-l-rhamnopyranose, UDP-alpha-d-xylose, and UDP-alpha-d-glucuronic acid, were found only in T. cruzi; and one, GDP-alpha-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.  相似文献   

8.
Chanda I  Pan A  Saha SK  Dutta C 《FEBS letters》2007,581(30):5751-5758
Comparative analyses of codon/amino acid usage in Leishmania major, Trypanosoma brucei and Trypanosoma cruzi reveal that gene expressivity and GC-bias play key roles in shaping the gene composition of all three parasites, and protein composition of L. major only. In T. brucei and T. cruzi, the major contributors to the variation in protein composition are hydropathy and/or aromaticity. Principle of Cost Minimization is followed by T. brucei, disregarded by T. cruzi and opposed by L. major. Slowly evolving highly expressed gene-products of L. major bear signatures of relatively AT-rich ancestor, while faster evolution under GC-bias has characterized the lowly expressed genes of the species by higher GC12-content.  相似文献   

9.
Another additional peculiarity in Leishmania will be discussed about of the amino acid divergence rate of three structural proteins: acidic ribosomal P1 and P2b proteins, and histone H3 by using multiple sequence alignment and dendrograms. These structural proteins present a high rate of divergence regarding to their homologous protein in Trypanosoma cruzi. At this regard, L. (V.) peruviana P1 and T. cruzi P1 showed 57.4% of divergence rate. Likewise, L. (V.) braziliensis histone H3 and acidic ribosomal P2 protein exhibited 31.8% and 41.7% respectively of rate of divergence in comparison with their homologous in T. cruzi.  相似文献   

10.
The phylogenetic relationships of Trypanosoma cruzi strains were inferred using maximum-likelihood from complete 18S rDNA sequences and D7-24Salpha rDNA regions from 20 representative strains of T. cruzi. For this we sequenced the 18S rDNA of 14 strains and the D7-24Salpha rDNA of four strains and aligned them to previously published sequences. Phylogenies inferred from these data sets identified four groups, named Riboclades 1, 2, 3, and 4, and a basal dichotomy that separated Riboclade 1 from Riboclades 2, 3, and 4. Substitution models and other parameters were optimized by hierarchical likelihood tests, and our analysis of the 18S rDNA molecular clock by the likelihood ratio test suggests that a taxa subset encompassing all 2,150 positions in the alignment supports rate constancy among lineages. The present analysis supports the notion that divergence dates of T. cruzi Riboclades can be estimated from 18S rDNA sequences and therefore, we present alternative evolutionary scenarios based on two different views of T. cruzi intraspecific divergence. The first assumes a faster evolutionary rate, which suggests that the divergence between T. cruzi I and II and the extant strains occurred in the Tertiary period (37-18 MYA). The other, which supports the hypothesis that the divergence between T. cruzi I and II occurred in the Cretaceous period (144-65 MYA) and the divergence of the extant strains occurred in the Tertiary period of the Cenozoic era (65-1.8 MYA), is consistent with our previously proposed hypothesis of divergence by geographical isolation and mammalian host coevolution.  相似文献   

11.
Pyrococcus furiosus protease I (PFPI) is a multimeric cysteine peptidase from P. furiosus. Genome analyses indicate that orthologues are present in rather few other organisms, including Dictyostelium discoideum and several bacteria, Archaea and plants. An open reading frame (ORF) coding for a PFPI-like protein (PFP1) was identified in Leishmania major and Leishmania mexicana and full-length spliced and polyadenylated PFP1 mRNA detected for both species. Vestiges of a PFPI-like gene could also be identified in Leishmania braziliensis and Leishmania infantum, but no ORF remains owing to the presence of frame-shifts and stop codons. No evidence for a PFPI-like gene could be found in the syntenic region of Trypanosoma brucei or Trypanosoma cruzi, raising the possibility that the PFPI-like genes were acquired by a lateral gene transfer event after the divergence of trypanosomes and Leishmania. The gene may have subsequently degenerated into a pseudogene in some Leishmania species, owing to the loss of relevant biological function. However, antibodies raised against L. mexicana recombinant protein detected PFP1 in promastigote extracts of L. major, but not in L. mexicana promastigote or amastigote extracts. The expression of PFP1 in L. major suggests that PFP1 might contribute to the disease tropism that distinguishes this Leishmania species from others.  相似文献   

12.
Leishmaniasis and Chagas' are parasitic protozoan diseases that affect the poorest population in the world, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, novel, safe and more efficacious drugs are essential. In this work, the CH(2)Cl(2) phase from MeOH extract from the leaves of Baccharis retusa DC. (Asteraceae) was fractioned to afford two flavonoids: naringenin (1) and sakuranetin (2). These compounds were in vitro tested against Leishmania spp. promastigotes and amastigotes and Trypanosoma cruzi trypomastigotes and amastigotes. Compound 2 presented activity against Leishmania (L.) amazonensis, Leishmania (V.) braziliensis, Leishmania (L.) major, and Leishmania (L.) chagasi with IC(50) values in the range between 43 and 52 μg/mL and against T. cruzi trypomastigotes (IC(50)=20.17 μg/mL). Despite of the chemical similarity, compound 1 did not show antiparasitic activity. Additionally, compound 2 was subjected to a methylation procedure to give sakuranetin-4'-methyl ether (3), which resulted in an inactive compound against both Leishmania spp. and T. cruzi. The obtained results indicated that the presence of one hydroxyl group at C-4' associated to one methoxyl group at C-7 is important to the antiparasitic activity. Further drug design studies aiming derivatives could be a promising tool for the development of new therapeutic agents for Leishmaniasis and Chagas' disease.  相似文献   

13.
Most molecular trees of trypanosomatids are based on point mutations within DNA sequences. In contrast, there are very few evolutionary studies considering DNA (re) arrangement as genetic characters. Waiting for the completion of the various parasite genome projects, first information may already be obtained from chromosome size-polymorphism, using the appropriate algorithms for data processing. Three illustrative models are presented here. First, the case of Leishmania (Viannia) braziliensis/L. (V.) peruviana is described. Thanks to a fast evolution rate (due essentially to amplification/deletion of tandemly repeated genes), molecular karyotyping seems particularly appropriate for studying recent evolutionary divergence, including eco-geographical diversification. Secondly, karyotype evolution is considered at the level of whole genus Leishmania. Despite the fast chromosome evolution rate, there is qualitative congruence with MLEE- and RAPD-based evolutionary hypotheses. Significant differences may be observed between major lineages, likely corresponding to major and less frequent rearrangements (fusion/fission, translocation). Thirdly, comparison is made with Trypanosoma cruzi. Again congruence is observed with other hypotheses and major lineages are delineated by significant chromosome rearrangements. The level of karyotype polymorphism within that "species" is similar to the one observed in "genus" Leishmania. The relativity of the species concept among these two groups of parasites is discussed.  相似文献   

14.
Evolution of codon usage and base contents in kinetoplastid protozoans   总被引:2,自引:0,他引:2  
In this study we analyze and compare the trends in codon usage in five representative species of kinetoplastid protozoans (Crithidia fasciculata, Leishmania donovani, L. major, Trypanosoma cruzi and T. brucei), with the purpose of investigating the processes underlying these trends. A principal component analysis shows that the G+C content at the third codon position represents the main source of codon-usage variation, both within species (among genes) and among species. The non- Trypanosoma species exhibit narrow distributions in codon usage, while both Trypanosoma species present large within-species heterogeneity. The three non-Trypanosoma species have very similar codon-usage preferences. These codon preferences are also shared by the highly expressed genes of T. cruzi and to a lesser degree by those of T. brucei. This leads to the conclusion that the codon preferences shared by these species are the ancestral ones in the kinetoplastids. On the other hand, the study of noncoding sequences shows that Trypanosoma species exhibit mutational biases toward A + T richness, while the non- Trypanosoma species present mutational pressure in the opposite direction. These data taken together allow us to infer the origin of the different codon-usage distributions observed in the five species studied. In C. fasciculata and Leishmania, both mutational biases and (translational) selection pull toward G + C richness, resulting in a narrow distribution. In Trypanosoma species the mutational pressure toward A + T richness produced a shift in their genomes that differentially affected coding and noncoding sequences. The effect of these pressures on the third codon position of genes seems to have been inversely proportional to the level of gene expression.   相似文献   

15.
16.
ABSTRACT. Tissue homogenates containing amastigotes of either Leishmania donovani, L. tropica , or Trypanosoma cruzi were rapidly frozen with 10% glycerol as cryoprotectant. Viability and pathogenicity were maintained for at least 23 years with the Khartoum strain of L. donovani , 22 years with the Malakal strain of L. donovani , and 7 years for L. tropica and T. cruzi . Similar results over a shorter period of time were obtained with a slow-freezing technique.  相似文献   

17.
The minicircle molecules present in the kinetoplast DNA (kDNA) network constitute a particularly useful molecular tool because they are a multicopy target and present a variable region that differs among minicircle classes in the same network. Using the polymerase chain reaction (PCR) and a set of primers directed outwardly from the minicircle conserved region, it is possible to prepare molecular probes representing the pool of variable regions from the different minicircle classes in the kDNA. In order to examine the specificity of the minicircle variable region as hybridization probes in Leishmania (Viannia) species, such fragments were amplified from reference strains and from a panel of isolates representing the zymodeme diversity of Leishmania (Viannia) in Colombia. The size of the amplified products was conserved in Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis, and Leishmania (Viannia) panamensis (650 bp) and diverged in Leishmania (Viannia) equatorensis and Leishmania (Viannia) colombiensis (850 bp). The amplified products were further hybridized to variable region pools of Leishmania braziliensis, Leishmania panamensis, Leishmania guyanensis, and Leishmania equatorensis reference strains. The results obtained from the hybridization experiments support this approach as a means of defining relationships among strains. Hybridization allowed homologies to be perceived, whereas restriction fragment length analysis of the amplified products yielded strain-specific profiles. Apparently, L. (V.) equatorensis and L. (V.) colombiensis minicircle variable regions have no or only low homology with those of other Leishmania (Viannia) species, showing the divergence of those species within the subgenus.  相似文献   

18.
The genus Leishmania includes many pathogenic species which are genetically very distant. The possibility of genetic exchange between different strains is still an important and debated question. Very few genetic hybrids (i.e., offspring of genetically dissimilar species) have been described in Leishmania. In this study, we report the first example of genetic hybrids occurring between two divergent Leishmania species, Leishmania infantum and Leishmania major. These two species have distinct geographical distributions and are transmitted by different vector species to different mammalian reservoir hosts. These hybrid strains were isolated in Portugal from immunocompromised patients and characterized by molecular and isoenzymatic techniques. These approaches showed that these chimeric strains probably contained the complete genome of both L. major and L. infantum. We believe this is the first report of genetic hybrids between such phylogenetically and epidemiologically distant species of Leishmania. This raises questions about the frequency of such cross-species genetic exchange in natural conditions, modalities of hybrid transmission, their long term maintenance as well as the consequences of these transfers on phenotypes such as drug resistance or pathogenicity.  相似文献   

19.
The genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major have been sequenced, but the phylogenetic relationships of these three protozoa remain uncertain. We have constructed trypanosomatid phylogenies based on genes for glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and small subunit ribosomal RNA (SSU rRNA). Trees based on gGAPDH nucleotide and amino acid sequences (51 taxa) robustly support monophyly of genus Trypanosoma, which is revealed to be a relatively late-evolving lineage of the family Trypanosomatidae. Other trypanosomatids, including genus Leishmania, branch paraphyletically at the base of the trypanosome clade. On the other hand, analysis of the SSU rRNA gene data produced equivocal results, as trees either robustly support or reject monophyly depending on the range of taxa included in the alignment. We conclude that the SSU rRNA gene is not a reliable marker for inferring deep level trypanosome phylogeny. The gGAPDH results support the hypothesis that trypanosomes evolved from an ancestral insect parasite, which adapted to a vertebrate/insect transmission cycle. This implies that the switch from terrestrial insect to aquatic leech vectors for fish and some amphibian trypanosomes was secondary. We conclude that the three sequenced pathogens, T. brucei, T. cruzi and L. major, are only distantly related and have distinct evolutionary histories.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号