首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Bovine papillomavirus (BPV) was methylated in vitro at either the 29 HpaII sites, the 27 HhaI sites, or both. Methylation of the HpaII sites reduced transformation by the virus two- to sixfold, while methylation at HhaI sites increased transformation two- to fourfold. DNA methylated at both HpaII and HhaI sites did not differ detectably from unmethylated DNA in its efficiency of transformation. These results indicate that specific methylation sites, rather than the absolute level of methylated cytosine residues, are important in determining the effects on transformation and that the negative effects of methylation at some sites can be compensated for by methylation at other sites. BPV molecules in cells transformed by methylated BPV DNA contained little or no methylation, indicating that the pattern of methylation was not faithfully retained in these extrachromosomally replicating molecules. Methylation at the HpaII sites (but not the HhaI sites) in the cloned BPV plasmid or in pBR322 also inhibited transformation of the plasmids into Escherichia coli HB101 cells.  相似文献   

2.
DNA methylation affecting the expression of murine leukemia proviruses.   总被引:38,自引:18,他引:20       下载免费PDF全文
The endogenous, vertically transmitted proviral DNAs of the ecotropic murine leukemia virus in AKR embryo fibroblasts were found to be hypermethylated relative to exogenous AKR murine leukemia virus proviral DNAs acquired by infection of the same cells. The hypermethylated state of the endogenous AKR murine leukemia virus proviruses in these cells correlated with the failure to express AKR murine leukemia virus and the lack of infectivity of cellular DNA. Induction of the endogenous AKR murine leukemia virus proviruses with the methylation antagonist 5-azacytidine suggested a causal connection between DNA methylation and provirus expression. Also found to be relatively hypermethylated and noninfectious were three of six Moloney murine leukemia virus proviral DNAs in an unusual clone of infected rat cells. Recombinant DNA clones which derived from a methylated, noninfectious Moloney provirus of this cell line were found to be highly active upon transfection, suggesting that a potentially active proviral genome can be rendered inactive by cellular DNA methylation. In contrast, in vitro methylation with the bacterial methylases MHpaII and MHhaI only slightly reduced the infectivity of the biologically active cloned proviral DNA. Recombinant DNA clones which derived from a second Moloney provirus of this cell line were noninfectious. An in vitro recombination method was utilized in mapping studies to show that this lack of infectivity was governed by mechanisms other than methylation.  相似文献   

3.
4.
5.
6.
The methylation and amplification of mouse mammary tumor virus (MuMTV) proviral DNA was investigated in normal, premalignant, and malignant tissues of GR/A mice. The proviral methylation pattern was examined with the restriction enzyme HhaI, which fails to cleave methylated DNA. MuMTV proviral DNA from liver, kidney, and heart was highly methylated. Proviral DNA was somewhat undermethylated in mammary gland cells from virgin and lactating mice and extensively undermethylated in cells from premalignant outgrowths, pregnancy-dependent tumors, and pregnancy-independent tumors. The restriction enzyme SacI was used to detect additional proviruses in the same cells. No additional proviral copies of MuMTV were detected in liver, kidney, or heart cells or in mammary gland cells from virgin mice. Some mammary gland cells from lactating mice appeared to contain additional copies of the endogenous, highly oncogenic GT-MTV-2 provirus. Premalignant outgrowth, pregnancy-dependent tumor, and pregnancy-independent tumor cells contained an average of two to three additional copies per cell of the GT-MTV-2 provirus. Thus, neoplasia in GR/A mice was directly associated with quantized increases in MuMTV proviral DNA undermethylation and GR-MTV-2 proviral DNA amplification. Restriction enzyme analysis suggested that premalignant outgrowths and pregnancy-dependent tumors both consisted largely of heterogenous cell populations, although some evidence of clonal dominance was detected.  相似文献   

7.
8.
We studied the relation between LTR methylation and expression of the family of endogenous retrovirus-like elements related to mouse intracisternal A-particles (IAP). Comparative HpaII/MspI and HhaI restriction analysis of genomic DNA's showed that in cells and tissues with a low level of IAP gene expression, HpaII and HhaI sites within the 5' LTR were heavily methylated, while in cells abundantly expressing IAP's 20 to 30% of the 5' LTRs were demethylated at these sites. The effects of methylation on the promoter activity of a cloned IAP 5' LTR was studied directly, using the plasmid pMIA5' L-cat in which this LTR was linked to the chloramphenicol acetyl transferase (CAT) gene. In vitro methylation of three HhaI sites located between -137 and -205 bp from the RNA start site of this LTR completely inactivated the promoter activity of pMIA5' L-cat transfected into COS7 cells. Methylation of a HpaII site located 94 bp downstream from the RNA start site reduced the promoter activity by 75%. The results show that methylation at sites both upstream and downstream from the RNA start site profoundly effects the promoter activity of this LTR and suggest that methylation within the 5' LTR can serve to regulate IAP gene expression in vivo.  相似文献   

9.
10.
The restriction enzymes HhaI and HpaII, whose activity is inhibited by cytosine methylation within their recognition sites, have been utilised as probes to study methylation in the vicinity of the ovalbumin gene in DNA from various chicken tissues. This was complemented by a preliminary study of methylation in the regions of chicken ovotransferrin (conalbumin), ovomucoid and beta-globin genes. From our data we conclude that HaI or HpaII sites can be divided in 3 classes according to their pattern of methylation in different tissues. In the first class of sites (mV class) the extent of methylation varies in different tissues. The patterns obtained show that methylation at the sites located within and around the 3 genes which code for egg white proteins is in general lowest in oviduct of laying hen, where these genes are expressed. However some sites are not methylated (m- class) and others are 95 to 100% resistant (m+ class) to digestion by HhaI or HpaII in the DNAs of all the tissues which were tested. Our study has also revealed a remarkable number of allelic variants for the presence of HhaI or HpaII sites in the region of the ovalbumin gene.  相似文献   

11.
12.
The effect of DNA cytosine methylation on promoter activity was assessed using a transient expression system employing pHrasCAT. This 551 bp Ha-ras-1 gene promoter region is enriched with 84 CpG dinucleotides, six functional GC boxes, and is prototypic of many genes possessing CpG islands in their promoter regions. Bacterial modification enzymes HhaI methyl transferase (MTase) and HpaII MTase, alone or in combination with a human placental DNA methyltransferase (HP MTase) that methylates CpG sites in a generalized manner, including asymmetric elements such as GC box CpG's, were used to methylate at different types of sites in the promoter. Methylation of HhaI and HpaII sites reduced CAT expression by approximately 70%-80%, whereas methylation at generalized CpG sites with HP MTase inactivated the promoter by greater than 95%. The inhibition of H-ras promoter activity was not attributable to methylation-induced differences in DNA uptake or stability in the cell, topological form of the plasmid, or methylation effects in non-promoter regions.  相似文献   

13.
DNA methylation diminishes bleomycin-mediated strand scission   总被引:1,自引:0,他引:1  
Three DNA duplexes differing substantially in sequence were derived from pBR322 plasmid DNA and supercoiled SV40 DNA by digestion with appropriate restriction endonucleases. Following treatment with the restriction methylase HhaI (recognition sequence: GCGC) or HhaI and HpaII (CCGG), the unmethylated and methylated DNAs were compared as substrates for the antitumor agent bleomycin. Bleomycin-mediated strand scission was shown to diminish substantially at a number of sites in proximity to the methylated cytidine moieties, especially where multiple sites had been methylated within a DNA segment of limited size. Detailed analysis of the DNA substrates revealed that both strands of DNA within a methylated region became more refractory to cleavage by bleomycin and that the protective effect could extend as many as 14 base pairs in proximity to the 5-methylcytidine moieties. Among the methylated DNA segments that became more resistant to bleomycin cleavage was a HpaII site of SV40 DNA, methylation of which has previously been shown to diminish the synthesis of the major late viral capsid protein following microinjection into Xenopus laevis oocytes. Study of the cleavage reaction at varying salt levels suggested that diminished bleomycin strand scission may be due, at least in part, to local conformational changes of the DNA to Z form (or other non-B-form structures). The results are generally consistent with the hypothesis that one mechanism for the expression of selective therapeutic action by certain DNA damaging agents could involve the recognition of specific methylation patterns.  相似文献   

14.
Activity of the cat gene driven by the cauliflower mosaic virus 35S promoter has been assayed by transfecting petunia protoplasts with the pUC8CaMVCAT plasmid. In vitro methylation of this plasmid with M.HpaII (methylates C in CCGG sites) and M.HhaI (methylates GCGC sites) did not affect bacterial chloramphenicol acetyltransferase (CAT) activity. It should be noted, however, that no HpaII or HhaI sites are present in the promoter sequence. In contrast, in vitro methylation of the plasmid with the spiroplasma methylase M.SssI, which methylates all CpG sites, resulted in complete inhibition of CAT activity. The promoter sequence contains 16 CpG sites and 13 CpNpG sites that are known to be methylation sites in plant DNA. In the light of this fact, and considering the results of the experiments presented here, we conclude that methylation at all CpG sites leaving CpNpG sites unmethylated is sufficient to block gene activity in a plant cell. Methylation of CpNpG sites in plant cells may, therefore, play a role other than gene silencing.  相似文献   

15.
16.
17.
18.
M Ramsden  G Cole  J Smith    A Balmain 《The EMBO journal》1985,4(6):1449-1454
We have previously shown that the mouse c-H-ras gene acquires transforming activity in chemically induced skin tumours. We have now investigated the pattern of DNA methylation at HpaII and XhoI sites around the c-H-ras locus in various tissues and stages of epidermal tumour progression. The results of this study suggest a correlation between the methylation state of the c-H-ras gene and its susceptibility to oncogenic conversion by a point-mutation. The locus is substantially undermethylated in normal epidermis in comparison with NIH/3T3 fibroblasts. Intermediate levels of methylation were observed in the other tissues investigated. The undermethylation at HpaII sites in epidermal DNA persists through the morphologically distinct phases of hyperplasia, benign papilloma and malignant carcinoma. Methylation at a specific XhoI site close to the c-H-ras gene is significantly reduced with respect to normal epidermis in some, but not all epidermal tumours. The methylation state of the c-H-ras locus in specific tumours is stably maintained following transfection of these DNAs into NIH/3T3 cells and selection of transformed foci. Demethylation of the locus is not essential in vitro for the transforming activity of DNA from epidermal tumours. The significance of changes in the methylation pattern of the c-H-ras gene in different tissues and during tumour progression is discussed.  相似文献   

19.
For the first time, we present evidence with restriction enzymes HpaII and MspI which indicates that the proviral DNA sequence of avian sarcoma virus is modified by methylation in a nonpermissive rat cell line but not in permissive chicken cells. Some of the endogenous viral sequences in the permissive cells were also methylated. No 5-methylcytosine could be detected in the unintegrated viral DNA.  相似文献   

20.
DNA methylation and the regulation of aldolase B gene expression   总被引:4,自引:0,他引:4  
DNA methylation was studied as a potential factor for the regulation of tissue-specific and developmentally specific expression of the rat aldolase B gene. We examined cytosine methylation in the HpaII and HhaI recognition sequences in the aldolase B gene in aldolase expressing and nonexpressing tissues and cells. Out of the 15 methyl-sensitive restriction sites examined, the sites in the 3'-half and 3'-flanking regions were found to be heavily methylated in all the tissues or cells, regardless of the level of aldolase B gene expression. However, the methylation pattern in the region immediately upstream and in the 5'-half of the gene exhibited tissue-specificity: the site located about 0.13 kb upstream of the cap site (just next to the CCAAT box), and the sites in the first intron (intron 1) were heavily methylated in nonexpressing cells and tissues (ascites hepatoma AH130 and brain), whereas those in an expressing tissue (liver) were considerably less methylated. These results suggest that cytosine methylation at the specific sites in the 5'-flanking and 5'-half regions of the gene is associated with repression of the gene activity. However, the gene is still substantially methylated in the fetal liver on day 16 of gestation, when it is in a committed state for rapid activation in the period immediately afterwards (Numazaki et al. (1984) Eur. J. Biochem. 152, 165-170). This suggests that demethylation of the methylated cytosine residues in the specific gene region is not necessarily required before activation of the gene during development, but it may occur along with or after the activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号