首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation of human UCB-derived MSCs could attenuate Escherichia coli (E. coli)-induced acute lung injury (ALI) in mice by suppressing the inflammatory response.

Methods

Eight-week-old male ICR mice were randomized to control or ALI groups. ALI was induced by intratracheal E. coli instillation. Three-hours after E. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores, myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation.

Results

MSC transplantation increased survival and attenuated lung injuries in ALI mice, as evidenced by decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and protein levels of IL-1α, IL-1β, IL-6, TNF-α, and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury.

Conclusions

Intratracheal transplantation of UCB-derived MSCs attenuates E. coli-induced ALI primarily by down-modulating the inflammatory process and enhancing bacterial clearance.  相似文献   

2.
《Cytotherapy》2014,16(6):764-775
Background aimsStem cells may be a promising therapy for acute respiratory distress syndrome. Recent in vivo and in vitro studies suggested that the mesenchymal stromal cells (MSCs) have anti-oxidative stress properties. We hypothesized that intravenous injection of bone marrow–derived mesenchymal stem cells (MSCs) could attenuate Escherichia coli–induced acute lung injury (ALI) in mice by controlling the oxidative stress status.MethodsEighty mice were randomly divided into four groups: group 1 (control group) received 25 μL of saline as a vehicle; group 2 contained E coli–induced ALI mice; group 3 included mice that received MSCs before induction of ALI; group 4 included mice that received MSCs after induction of ALI. Lung samples were isolated and assayed for oxidative stress variables and histopathologic analysis. Total anti-oxidant capacity was measured in broncho-alveolar lavage.ResultsPre- and post-injury MSC injection increased survival, reduced pulmonary edema and attenuated lung injuries in ALI mice. Histologically, MSCs exhibited a considerable degree of preservation of the pulmonary alveolar architecture. An increase of anti-oxidant enzyme activities and a decrease of myeloperoxidase activity and malondialdehyde levels in the MSC recipient groups versus the ALI group were found. Furthermore, the total anti-oxidant capacity and reduced glutathione levels were significantly increased in MSCs recipient groups versus the ALI group. Weak +ve inducible nitric oxide synthase immuno-expression in groups that received MSCs was detected. Pre-injury MSC injection showed better effects than did post-injury MSC injection.ConclusionsSystemic bone marrow–derived MSC injection was effective in modulating the oxidative stress status in E coli–induced acute lung injury in mice.  相似文献   

3.
Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuates the hyperoxia-induced neonatal lung injury. The aim of this study was to optimize the timing of MSCs transplantation. Newborn Sprague-Dawley rats were randomly exposed to hyperoxia (90% for 2 weeks and 60% for 1 week) or normoxia after birth for 21 days. Human UCB-derived MSCs (5×105 cells) were delivered intratracheally early at postnatal day (P) 3 (HT3), late at P10 (HT10) or combined early+late at P3+10 (HT3+10). Hyperoxia-induced increase in mortality, TUNEL positive cells, ED1 positive alveolar macrophages, myeloperoxidase activity and collagen levels, retarded growth and reduced alveolarization as evidenced by increased mean linear intercept and mean alveolar volume were significantly better attenuated in both HT3 and HT3+10 than in HT10. Hyperoxia-induced up-regulation of both cytosolic and membrane p47phox indicative of oxidative stress, and increased inflammatory markers such as tumor necrosis factor-α, interleukin (IL) -1α, IL-1β, IL-6, and transforming growth factor-β measured by ELISA, and tissue inhibitor of metalloproteinase-1, CXCL7, RANTES, L-selectin and soluble intercellular adhesion molecule-1 measured by protein array were consistently more attenuated in both HT3 and HT3+10 than in HT10. Hyperoxia-induced decrease in hepatocyte growth factor and vascular endothelial growth factor was significantly up-regulated in both HT3 and HT3+10, but not in HT10. In summary, intratracheal transplantation of human UCB derived MSCs time-dependently attenuated hyperoxia-induced lung injury in neonatal rats, showing significant protection only in the early but not in the late phase of inflammation. There were no synergies with combined early+late MSCs transplantation.  相似文献   

4.

Background

Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes.

Methods

The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 ??g/g), PMA 4 ??g/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined.

Results

PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent.

Conclusions

Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial, while PARP plays a deteriorative effect on the PMA-induced ALI. NAC exerts protective effects on the inflammatory cascade leading to pulmonary injury. This B complex compound may be applied for clinical usage and therapeutic regimen.  相似文献   

5.
ObjectivesAcute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in‐depth study.Materials and methodsWe evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)‐induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry.ResultsMesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small‐intestinal lymphocytes and Peyer''s patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect.ConclusionsThe present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS‐induced ALI.  相似文献   

6.

Background

Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs.

Methods

C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs.

Results

Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix.

Conclusions

These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.
  相似文献   

7.

Background

Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo.

Methods

Wild-type (WT) and TLR9-deficient (TLR9-D) mice received CpG-ODN intraperitoneally (1668-Thioat, 1 nmol/g BW) and were observed for up to 6 hrs. Lung tissue and plasma samples were taken and various inflammatory markers were measured.

Results

In WT mice, CpG-ODN induced a strong activation of pulmonary NFκB as well as a significant increase in pulmonary TNF-α and IL-1β mRNA/protein. In addition, cytokine serum levels were significantly elevated in WT mice. Increased pulmonary content of lung myeloperoxidase (MPO) was documented in WT mice following application of CpG-ODN. Bronchoalveolar lavage (BAL) revealed that CpG-ODN stimulation significantly increased total cell number as well as neutrophil count in WT animals. In contrast, the CpG-ODN-induced inflammatory response was abolished in TLR9-D mice.

Conclusion

This study suggests that bacterial CpG-ODN causes lung inflammation via TLR9.  相似文献   

8.
Jiang A  Liu C  Song Y  Liu F  Li Q  Wu Z  Yu L  Lv Y 《PloS one》2011,6(9):e24960

Background

We have observed at our clinical work that acute lung injury (ALI) often occurs in patients transplanted with donor livers persevered for long time. So, we conducted this study to investigate the influence of cold preservation time (CPT) of donor liver on ALI induced by liver transplantation (LT), and further study the role of nuclear factor-κB (NF-κB) in the process.

Methods

Wistar rats were used as donors and recipients to establish orthotopic rat liver transplantation models. Donor livers were preserved at 4°C for different lengths of time. The effect of NF-κB inhibitor, ammonium pyrrolidinedithiocarbamate (PDTC), on ALI was detected. All samples were harvested after 3 h reperfusion. The severity of liver injury was evaluated first. The expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in liver tissue and liver outflow serum were measured respectively. The severity indexes of ALI, the activity of NF-κB and inhibitor-κBα (I-κBα) in lung/liver were measured accordingly.

Results

With the prolonged liver CPT, the liver damage associated indexes and ALI-related indexes all increased significantly. TNF-α and IL-1β in liver outflow serum increased accordingly, and the activity of NF-κB in liver/lung increased correspondingly. All these ALI-associated indexes could be partially reversed by the use of PDTC.

Conclusions

Extended CPT aggravates the damage of donor liver and induces the expressions of TNF-α and IL-1β in liver. These inflammatory factors migrate to lung via liver outflow blood and activate NF-κB in lung, inducing ALI finally. NF-κB may play a critical role in LT-related ALI. Patients with or at risk of ALI may benefit from acute anti-inflammatory treatment with PDTC.  相似文献   

9.

Background

Effective therapy of Acute Lung Injury (ALI) is still a major scientific and clinical problem. To define novel therapeutic strategies for sequelae of blunt chest trauma (TxT) like ALI/Acute Respiratory Distress Syndrome, we have investigated the immunomodulatory and regenerative effects of a single dose of ex vivo expanded human or rat mesenchymal stromal cells (hMSCs/rMSCs) with or without priming, immediately after the induction of TxT in Wistar rats.

Methods

We analyzed the histological score of lung injury, the cell count of the broncho alveolar lavage fluid (BAL), the change in local and systemic cytokine level and the recovery of the administered cells 24?h and 5 days post trauma.

Results

The treatment with hMSCs reduced the injury score 24?h after trauma by at least 50% compared with TxT rats without MSCs. In general, TxT rats treated with hMSCs exhibited a lower level of pro-inflammatory cytokines (interleukin [IL]-1B, IL-6) and chemokines (C-X-C motif chemokine ligand 1 [CXCL1], C-C motif chemokine ligand 2 [CCL2]), but a higher tumor necrosis factor alpha induced protein 6 (TNFAIP6) level in the BAL compared with TxT rats after 24?h. Five days after trauma, cytokine levels and the distribution of inflammatory cells were similar to sham rats. In contrast, the treatment with rMSCs did not reveal such therapeutic effects on the injury score and cytokine levels, except for TNFAIP6 level.

Conclusion

TxT represents a suitable model to study effects of MSCs as an acute treatment strategy after trauma. However, the source of MSCs has to be carefully considered in the design of future studies.  相似文献   

10.

Background

Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) have been the leading cause of morbidity and mortality in intensive care units (ICU). Currently, there is no effective pharmacological treatment for acute lung injury. Curcumin, extracted from turmeric, exhibits broad anti-inflammatory properties through down-regulating inflammatory cytokines. However, the instability of curcumin limits its clinical application.

Methods

A series of new curcumin analogs were synthesized and screened for their inhibitory effects on the production of TNF-α and IL-6 in mouse peritoneal macrophages by ELISA. The evaluation of stability and mechanism of active compounds was determined using UV-assay and Western Blot, respectively. In vivo, SD rats were pretreatment with c26 for seven days and then intratracheally injected with LPS to induce ALI. Pulmonary edema, protein concentration in BALF, injury of lung tissue, inflammatory cytokines in serum and BALF, inflammatory cell infiltration, inflammatory cytokines mRNA expression, and MAPKs phosphorylation were analyzed. We also measured the inflammatory gene expression in human pulmonary epithelial cells.

Results

In the study, we synthesized 30 curcumin analogs. The bioscreeening assay showed that most compounds inhibited LPS-induced production of TNF-α and IL-6. The active compounds, a17, a18, c9 and c26, exhibited their anti-inflammatory activity in a dose-dependent manner and exhibited greater stability than curcumin in vitro. Furthermore, the active compound c26 dose-dependently inhibited ERK phosphorylation. In vivo, LPS significantly increased protein concentration and number of inflammatory cells in BALF, pulmonary edema, pathological changes of lung tissue, inflammatory cytokines in serum and BALF, macrophage infiltration, inflammatory gene expression, and MAPKs phosphorylation . However, pretreatment with c26 attenuated the LPS induced increase through ERK pathway in vivo. Meanwhile, compound c26 reduced the LPS-induced inflammatory gene expression in human pulmonary epithelial cells.

Conclusions

These results suggest that the novel curcumin analog c26 has remarkable protective effects on LPS-induced ALI in rat. These effects may be related to its ability to suppress production of inflammatory cytokines through ERK pathway. Compound c26, with improved chemical stability and bioactivity, may have the potential to be further developed into an anti-inflammatory candidate for the prevention and treatment of ALI.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0199-1) contains supplementary material, which is available to authorized users.  相似文献   

11.

Rationale

Severe influenza remains a major public health threat and is responsible for thousands of deaths annually. Increasing antiviral resistance and limited effectiveness of current therapies highlight the need for new approaches to influenza treatment. Extensive pre-clinical data have shown that mesenchymal stromal (stem) cell (MSC) therapy can induce anti-inflammatory effects and enhance repair of the injured lung. We hypothesized that MSC therapy would improve survival, dampen lung inflammation and decrease acute lung injury (ALI) in a murine model of severe influenza.

Methods

C57Bl/6 mice were infected with influenza A/PuertoRico/8/34 (mouse-adapted H1N1) or influenza A/Mexico/4108/2009 (swine-origin pandemic H1N1) and administered human or mouse MSCs via the tail vein, either pre- or post- infection. MSC efficacy was evaluated as both an independent and adjunctive treatment strategy in combination with the antiviral agent, oseltamivir. Weight loss and survival were monitored. Inflammatory cells, cytokine/chemokines (IFN-γ, CXCL10, CCL2 and CCL5) and markers of ALI (total protein and IgM), were measured in bronchoalveolar lavage fluid and lung parenchyma.

Results

Administration of murine MSCs or human MSCs in a prophylactic or therapeutic regimen failed to improve survival, decrease pulmonary inflammation/inflammatory cell counts or prevent ALI in influenza virus-infected mice. MSCs administered in combination with oseltamivir also failed to improve outcomes.

Conclusions

Despite similarities in the clinical presentation and pathobiology of ALI and severe influenza, our findings suggest that MSC therapy may not be effective for prevention and/or treatment of acute severe influenza.  相似文献   

12.
Recently, we demonstrated that intratracheal transplantation of human umbilical cord blood‐ derived mesenchymal stem cells (MSCs) attenuates Escherichia (E) coli‐ induced acute lung injury primarily by down‐ modulating inflammation and enhancing bacterial clearance iQn mice. This study was performed to elucidate the mechanism underlying the antibacterial effects of MSCs. The growth of E. coli in vitro was significantly inhibited only by MSCs or their conditioned medium with bacterial preconditioning, but not by fibroblasts or their conditioned medium. Microarray analysis identified significant up‐ regulation of toll‐ like receptors (TLR)‐ 2 and TLR‐ 4, and β‐ defensin 2 (BD2) in MSCs compared with fibroblasts after E. coli exposure. The increased BD2 level and the in vitro antibacterial effects of MSCs were abolished by specific antagonist or by siRNA‐ mediated knockdown of TLR‐ 4, but not TLR‐ 2, and restored by BD2 supplementation. The in vivo down‐ modulation of the inflammatory response and enhanced bacterial clearance, increased BD2 secretion and the resultant protection against E. coli‐ induced pneumonia observed only with MSCs, but not fibroblasts, transplantation in mice, were abolished by knockdown of TLR‐ 4 with siRNA transfection. Our data indicate that BD2 secreted by the MSCs via the TLR‐ 4 signalling pathway is one of the critical paracrine factors mediating their microbicidal effects against E. coli, both in vitro and in vivo. Furthermore, TLR‐ 4 from the transplanted MSCs plays a seminal role in attenuating in vivo E. coli‐ induced pneumonia and the ensuing acute lung injury through both its anti‐ inflammatory and antibacterial effects.  相似文献   

13.

Background

Acute lung injury (ALI) is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation.

Methods

Adult male Sprague–Dawley rats received orthotopic autologous liver transplantation (OALT) and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB) p65 translocation was assessed by Western blot.

Results

The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI.

Conclusions

Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.  相似文献   

14.
Two different repair mechanisms of mesenchymal stem cells (MSCs) are suggested to participate in the repair of acute lung injury (ALI): (i) Cell engraftment mechanism, (ii) Paracrine/endocrine mechanism. However, the exact roles they play in the repair remain unclear. The aim of the study was to evaluate the role of paracrine/endocrine mechanism using a novel intrapleural delivery method of MSCs. Either 1 × 106 MSCs in 300 μl of PBS or 300 μl PBS alone were intrapleurally injected into rats with endotoxin‐induced ALI. On days 1, 3 or 7 after injections, samples of lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each rat for assessment of lung injury, biochemical analysis and histology. The distribution of MSCs was also traced by labelling the cells with 4′,6‐diamidino‐2‐phenylindole dihydrochloride (DAPI). MSCs intrapleural injection significantly improved LPS‐induced lung histopathology compared with PBS‐treated group at day 3. There was also a significant decrease in total cell counts and protein concentration in BALF at day 7 in the MSCs ‐treated rats compared to PBS control group. Tracking the DAPI‐marked MSCs showed that there were no exotic MSCs in the lung parenchyma. MSCs administration resulted in a down‐regulation of pro‐inflammatory response to endotoxin by reducing TNF‐α both in the BALF and in the lung, while up‐regulating the anti‐inflammatory cytokine IL‐10 in the lung. In conclusion, treatment with intrapleural MSCs administration markedly attenuates the severity of endotoxin‐induced ALI. This role is mediated by paracrine/endocrine repair mechanism of MSCs rather than by the cell engraftment mechanism.  相似文献   

15.
Bone marrow mesenchymal stem cells (BM-MSCs) have therapeutic potential in acute lung injury (ALI). Hypoxia-induced mitogenic factor (HIMF) is a lung-specific growth factor that participates in a variety of lung diseases. In this study, we evaluated the therapeutic role of BM-MSC transplantation in lipopolysaccharide (LPS)- induced ALI and assessed the importance of HIMF in MSC transplantation. MSCs were isolated and identified, and untransduced MSCs, MSCs transduced with null vector or MSCs transduced with a vector encoding HIMF were transplanted into mice with LPS-induced ALI. Histopathological changes, cytokine expression and indices of lung inflammation and lung injury were assessed in the various experimental groups. Lentiviral transduction did not influence the biological features of MSCs. In addition, transplantation of BM-MSCs alone had significant therapeutic effects on LPS-induced ALI, although BM-MSCs expressing HIMF failed to improve the histopathological changes observed with lung injury. Unexpectedly, tumour necrosis factor α levels in lung tissues, lung oedema and leucocyte infiltration into lungs were even higher after the transplantation of MSCs expressing HIMF, followed by a significant increase in lung hydroxyproline content and α-smooth muscle actin expression on day 14, as compared to treatment with untransduced MSCs. BM-MSC transplantation improved LPS-induced lung injury independent of HIMF.  相似文献   

16.

Background

Despite our increased understanding of the mechanisms involved in acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), there is no specific pharmacological treatment of proven benefit. We used a novel screening methodology to examine potential anti-inflammatory effects of a small structure-focused library of synthetic carbamate and urea derivatives in a well established cell model of lipopolysaccharide (LPS)-induced ALI/ARDS.

Methodology/Principal Findings

After a pilot study to develop an in vitro LPS-induced airway epithelial cell injury model, a library of synthetic carbamate and urea derivates was screened against representative panels of human solid tumor cell lines and bacterial and fungal strains. Molecules that were non-cytotoxic and were inactive in terms of antiproliferative and antimicrobial activities were selected to study the effects on LPS-induced inflammatory response in an in vitro cell culture model using A549 human alveolar and BEAS-2B human bronchial cells. These cells were exposed for 18 h to LPS obtained from Escherichia coli, either alone or in combination with the test compounds. The LPS antagonists rhein and emodin were used as reference compounds. The most active compound (CKT0103) was selected as the lead compound and the impact of CKT0103 on pro-inflammatory IL-6 and IL-8 cytokine levels, expression of toll-like receptor-4 (TLR4) and nuclear factor kappa B inhibitor alpha (IκBα) was measured. CKT0103 significantly inhibited the synthesis and release of IL-6 and IL-8 induced by LPS. This suppression was associated with inhibition of TLR4 up-regulation and IκBα down-regulation. Immunocytochemical staining for TLR4 and IκBα supported these findings.

Conclusions/Significance

Using a novel screening methodology, we identified a compound – CKT0103 – with potent anti-inflammatory effects. These findings suggest that CKT0103 is a potential target for the treatment of the acute phase of sepsis and sepsis-induced ALI/ARDS.  相似文献   

17.

Background

Pulmonary inflammation and endothelial barrier permeability increase in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) induced by pro-inflammatory cytokines and matrix metalloproteinases (MMPs). However, the relationship between pro-inflammatory cytokines and MMPs in ALI/ARDS remains poorly understood.

Methods

A lipopolysaccharide (LPS)-induced ALI rat model was established through intratracheal instillation. The wet/dry ratios of lung tissues were measured, and bronchoalveolar lavage fluid (BALF) was collected to test protein concentrations, total cell/macrophage numbers, and pro-inflammatory cytokine levels. LPS-treated alveolar macrophages were utilized in in vitro experiments. The expression and secretion of MMPs were respectively detected using quantitative PCR, Western blotting and ELISA assays.

Results

The levels of IL-33 and MMP2/9 in BALF increased in all the ALI rats with severe lung injury. LPS-induced IL-33 autocrine upregulated the expression of MMP2 and MMP9 through activating STAT3. Neutralizing IL-33 in culture medium with specific antibodies suppressed the expression and secretion of MMP2 and MMP9 in LPS-treated alveolar macrophages. Consistently, eliminating IL-33 decreased the levels of MMP2 and MMP9 in BALF and alleviated lung injury in ALI rats.

Conclusion

The IL-33/STAT3/MMP2/9 regulatory pathway is activated in alveolar macrophages during acute lung injury, which may exacerbate the pulmonary inflammation.
  相似文献   

18.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a kind of diffuse inflammatory injury caused by various factors, characterized by respiratory distress and progressive hypoxemia. It is a common clinical critical illness. The aim of this study was to investigate the effect and mechanism of the Mucin1 (MUC1) gene and its recombinant protein on lipopolysaccharide (LPS)-induced ALI/ARDS. We cultured human alveolar epithelial cell line (BEAS-2B) and used MUC1 overexpression lentivirus to detect the effect of MUC1 gene on BEAS-2B cells. In addition, we used LPS to induce ALI/ARDS in C57/BL6 mice and use hematoxylin and eosin (H&E) staining to verify the effect of their modeling. Recombinant MUC1 protein was injected subcutaneously into mice. We examined the effect of MUC1 on ALI/ARDS in mice by detecting the expression of inflammatory factors and oxidative stress molecules in mouse lung tissue, bronchoalveolar lavage fluid (BALF) and serum. Overexpression of MUC1 effectively ameliorated LPS-induced damage to BEAS-2B cells. Results of H&E staining indicate that LPS successfully induced ALI/ARDS in mice and MUC1 attenuated lung injury. MUC1 also reduced the expression of inflammatory factors (IL-1β, TNF-α, IL-6 and IL-8) and oxidative stress levels in mice. In addition, LPS results in an increase in the activity of the TLR4/NF-κB signaling pathway in mice, whereas MUC1 decreased the expression of the TLR4/NF-κB signaling pathway. MUC1 inhibited the activity of TLR4/NF-κB signaling pathway and reduced the level of inflammation and oxidative stress in lung tissue of ALI mice.Key words: Mucin1, acute lung injury, inflammation, oxidative stress, TLR4/NF-κB  相似文献   

19.

Background

Bupleurum polysaccharides (BPs), isolated from Bupleurum smithii var. parvifolium, possesses immunomodulatory activity, particularly on inflammation. Bacterial endotoxin lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor 4 (TLR4) on host cell membrane. The present study was performed to evaluate whether the therapeutic efficacy of BPs on suppression of LPS’s pathogenecity could be associated with the modulating of TLR4 signaling pathway.

Methodology/Principal Findings

LPS stimulated expression and activation of factors in the TLR4 signaling system, including TLR4, CD14, IRAK4, TRAF6, NF-κB, and JNK, determined using immunocytochemical and/or Western blot assays. BPs significantly inhibited these effects of LPS. LPS increased pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-12p40, and IFN-β) and NO production, evaluated using ELISA and Griess reaction assays, respectively. BPs antagonized these effects of LPS. Interestingly, BPs alone augmented secretion of some pro-inflammatory cytokines of non-LPS stimulated macrophages and enhanced phagocytic activity towards fluorescent E.coli bioparticles. In a rat model of acute lung injury (ALI) with pulmonary hemorrhage and inflammation, BPs ameliorated lung injuries and suppressed TLR4 expression.

Significance

The therapeutic properties of BPs in alleviating inflammatory diseases could be attributed to its inhibitory effect on LPS-mediated TLR4 signaling.  相似文献   

20.
Oppeltz RF  Rani M  Zhang Q  Schwacha MG 《Cytokine》2011,55(3):396-401
Burn is associated with profound inflammation and activation of the innate immune system in multiple organ beds, including the lung. Similarly, toll-like receptors (TLR) are associated with innate immune activation. Nonetheless, it is unclear what impact burn has on TLR-induced inflammatory responses in the lung.MethodsMale C57BL/6 mice were subjected to burn (3rd degree, 25% TBSA) or sham procedure and 1, 3 or 7 days thereafter, bronchoalveolar lavage (BAL) fluid was collected and cells were isolated and cultured in vitro with specific TLR agonists as follows: Zymosan (TLR-2), LPS (TLR-4) and CpG-ODN (TLR-9). Supernatants were collected 48 h later and assayed for inflammatory cytokine levels (IL-1β, IL-6, IL-10, IL-17, TNF-α, KC, MCP-1, MIP-1α, MIP-1β and RANTES) by Bioplex.ResultsBAL fluid from sham and burn mice did not contain detectable cytokine levels. BAL cells, irrespective of injury, were responsive to TLR-2 and TLR-4 activation. Seven days after burn, TLR-2 and TLR-4 mediated responses by BAL cells were enhanced as evidenced by increased production of IL-6, IL-17, TNF-α, MCP-1, MIP-1β and RANTES.ConclusionsBurn-induced changes in TLR-2 and TLR-4 reactivity may contribute to the development of post-burn complications, such as acute lung injury (ALI) and adult respiratory distress syndrome (ARDS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号