首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bioflavonoids as poisons of human topoisomerase II alpha and II beta   总被引:1,自引:0,他引:1  
Bandele OJ  Osheroff N 《Biochemistry》2007,46(20):6097-6108
Bioflavonoids are human dietary components that have been linked to the prevention of cancer in adults and the generation of specific types of leukemia in infants. While these compounds have a broad range of cellular activities, many of their genotoxic effects have been attributed to their actions as topoisomerase II poisons. However, the activities of bioflavonoids against the individual isoforms of human topoisomerase II have not been analyzed. Therefore, we characterized the activity and mechanism of action of three major classes of bioflavonoids, flavones, flavonols, and isoflavones, against human topoisomerase IIalpha and IIbeta. Genistein was the most active bioflavonoid tested and stimulated enzyme-mediated DNA cleavage approximately 10-fold. Generally, compounds were more active against topoisomerase IIbeta. DNA cleavage with both enzyme isoforms required a 5-OH and a 4'-OH and was enhanced by the presence of additional hydroxyl groups on the pendant ring. Competition DNA cleavage and topoisomerase II binding studies indicate that the 5-OH group plays an important role in mediating genistein binding, while the 4'-OH moiety contributes primarily to bioflavonoid function. Bioflavonoids do not require redox cycling for activity and function primarily by inhibiting enzyme-mediated DNA ligation. Mutagenesis studies suggest that the TOPRIM region of topoisomerase II plays a role in genistein binding. Finally, flavones, flavonols, and isoflavones with activity against purified topoisomerase IIalpha and IIbeta enhanced DNA cleavage by both isoforms in human CEM leukemia cells. These data support the hypothesis that bioflavonoids function as topoisomerase II poisons in humans and provide a framework for further analysis of these important dietary components.  相似文献   

2.
3.
4.
DNA topoisomerase (topo) II modulates DNA topology and is essential for cell division. There are two isoforms of topo II (α and β) that have limited functional redundancy, although their catalytic mechanisms appear the same. Using their COOH-terminal domains (CTDs) in yeast two-hybrid analysis, we have identified phospholipid scramblase 1 (PLSCR1) as a binding partner of both topo II α and β. Although predominantly a plasma membrane protein involved in phosphatidylserine externalization, PLSCR1 can also be imported into the nucleus where it may have a tumour suppressor function. The interactions of PLSCR1 and topo II were confirmed by pull-down assays with topo II α and β CTD fusion proteins and endogenous PLSCR1, and by co-immunoprecipitation of endogenous PLSCR1 and topo II α and β from HeLa cell nuclear extracts. PLSCR1 also increased the decatenation activity of human topo IIα. A conserved basic sequence in the CTD of topo IIα was identified as being essential for binding to PLSCR1 and binding of the two proteins could be inhibited by a synthetic peptide corresponding to topo IIα amino acids 1430-1441. These studies reveal for the first time a physical and functional interaction between topo II and PLSCR1.  相似文献   

5.
6.
Maternal factors control development prior to the activation of the embryonic genome. In vertebrates, little is known about the molecular mechanisms by which maternal factors regulate embryonic development. To understand the processes controlled by maternal factors and identify key genes involved, we embarked on a maternal-effect mutant screen in the zebrafish. We identified 68 maternal-effect mutants. Here we describe 15 mutations in genes controlling processes prior to the midblastula transition, including egg development, blastodisc formation, embryonic polarity, initiation of cell cleavage, and cell division. These mutants exhibit phenotypes not previously observed in zygotic mutant screens. This collection of maternal-effect mutants provides the basis for a molecular genetic analysis of the maternal control of embryogenesis in vertebrates.  相似文献   

7.
Chen X  Lou Q  He J  Yin Z 《PloS one》2011,6(12):e29515

Background

The zebrafish ladybird homeobox homologous gene 2 (lbx2) has been suggested to play a key role in the regulation of hypaxial myogenic precursor cell migration. Unlike their lbx counterparts in mammals, the function of teleost lbx genes beyond myogenesis during embryonic development remains unexplored.

Principal Findings

Abrogation of lbx2 function using a specific independent morpholino oligonucleotide (MO) or truncated lbx2 mRNA with an engrailed domain deletion (lbx2eh-) resulted in defective formation of the zebrafish posterior lateral line (PLL). Migration of the PLL primordium was altered and accompanied by increased cell death in the primordium of lbx2-MO-injected embryos. A decreased number of muscle pioneer cells and impaired expression pattern of sdf1a in the horizontal myoseptum was observed in lbx2 morphants.

Significance

Injection of lbx2 MO or lbx2eh- mRNA resulted in defective PPL formation and altered sdf1a expression, confirming an important function for lbx2 in sdf1a-dependent migration. In addition, the disassociation of PPL nerve extension with PLL primordial migration in some lbx2 morphants suggests that pathfinding of the PLL primordium and the lateral line nerve may be regulated independently.  相似文献   

8.
9.
10.
Light sheet microscopy techniques, such as selective plane illumination microscopy (SPIM), are ideally suited for time-lapse imaging of developmental processes lasting several hours to a few days. The success of this promising technology has mainly been limited by the lack of suitable techniques for mounting fragile samples. Embedding zebrafish embryos in agarose, which is common in conventional confocal microscopy, has resulted in severe growth defects and unreliable results. In this study, we systematically quantified the viability and mobility of zebrafish embryos mounted under more suitable conditions. We found that tubes made of fluorinated ethylene propylene (FEP) filled with low concentrations of agarose or methylcellulose provided an optimal balance between sufficient confinement of the living embryo in a physiological environment over 3 days and optical clarity suitable for fluorescence imaging. We also compared the effect of different concentrations of Tricaine on the development of zebrafish and provide guidelines for its optimal use depending on the application. Our results will make light sheet microscopy techniques applicable to more fields of developmental biology, in particular the multiview long-term imaging of zebrafish embryos and other small organisms. Furthermore, the refinement of sample preparation for in toto and in vivo imaging will promote other emerging optical imaging techniques, such as optical projection tomography (OPT).  相似文献   

11.
Okada Y  Tosaka A  Nimura Y  Kikuchi A  Yoshida S  Suzuki M 《Gene》2001,272(1-2):141-148
In human cells, atypical drug resistance was previously identified with reduced catalytic activity or nuclear localization efficiency of DNA topoisomerase II alpha (TOP2 alpha). We have shown two etoposide resistant hTOP2 alpha mutants, K798L and K798P confer resistance to etoposide. In this work, we showed these mutants are also resistant against doxorubicin and mAMSA in vivo in the yeast strain ISE2, rad52, top2-4 at the non-permissive temperature. We purified these mutants to characterize the drug resistant mechanism. Purified recombinant proteins were 8- to 12-fold more resistant to etoposide and doxorubicin than wild type TOP2 alpha, and 2-fold more resistant to amsacrine, as measured by accumulation of cleavable DNA. These data show that K798L and K798P may be intrinsically resistant against these drugs in vitro and that this character may confer atypical multidrug resistant phenotype in vivo in yeast.  相似文献   

12.
Topoisomerase II (Top2) is a ubiquitous nuclear enzyme that relieves torsional stress in chromosomal DNA during various cellular processes. Agents that target Top2, involving etoposide, doxorubicin, and mitoxantrone, are among the most effective anticancer drugs used in the clinic. Mammalian cells possess two genetically distinct Top2 isoforms, both of which are the target of these agents. Top2alpha is essential for cell proliferation and is highly expressed in vigorously growing cells, whereas Top2beta is nonessential for growth and has recently been implicated in treatment-associated secondary malignancies, highlighting the validity of a Top2alpha-specific drug for future cancer treatment; however, no such agent has been hitherto reported. Here we show that NK314, a novel synthetic benzo[c]phenanthridine alkaloid, targets Top2alpha and not Top2beta in vivo. Unlike other Top2 inhibitors, NK314 induces Top2-DNA complexes and double-strand breaks (DSBs) in an alpha isoform-specific manner. Heterozygous disruption of the human TOP2alpha gene confers increased NK314 resistance, whereas TOP2beta homozygous knock-out cells display increased NK314 sensitivity, indicating that the alpha isoform is the cellular target. We further show that the absence of Top2beta does not alleviate NK314 hypersensitivity of cells deficient in non-homologous end-joining, a critical pathway for repairing Top2-mediated DSBs. Our results indicate that NK314 acts as a Top2alpha-specific poison in mammalian cells, with excellent potential as an efficacious and safe chemotherapeutic agent. We also suggest that a series of human knock-out cell lines are useful in assessing DNA damage and repair induced by potential topoisomerase-targeting agents.  相似文献   

13.
The alpha and beta isoforms of DNA topoisomerase II (topo II) are targets for several widely used chemotherapeutic agents, and resistance to some of these drugs may be associated with reduced nuclear localization of the alpha isoform. Human topo IIalpha contains a strong bipartite nuclear localization signal (NLS) sequence between amino acids 1454 and 1497 (alphaNLS(1454-1497)). In the present study, we show that human topo IIalpha tagged with green fluorescence protein is still detectable in the nucleus when alphaNLS(1454-1497) has been disrupted. Seven additional regions in topo IIalpha containing overlapping potential bipartite NLSs were evaluated for their nuclear targeting abilities using a beta-galactosidase reporter system. A moderately functional NLS was identified between amino acids 1259 and 1296. When human topo IIbeta was examined in a similar fashion, it was found to contain two strongly functional sequences betaNLS(1522-1548) and betaNLS(1538-1573) in the region of topo IIbeta comparable to the region in topo IIalpha that contains the strongly functional alphaNLS(1454-1497). The third, betaNLS(1294-1332), although weaker than the other two beta sequences, is significantly stronger than the analogous alphaNLS(1259-1296). Differences in the NLS sequences of human topo II isoforms may contribute to their differences in subnuclear localization.  相似文献   

14.
Measuring the mobility of proteins in living cells has become critical to many studies in cell biology and forms the basis for discussion on sub-cellular dynamics. Increasingly localization networks are being put together into compartment models to represent the exchange of molecules, represented mathematically as ordinary differential equations (ODE). The set-up is based on published literature, the "knowledge" of the investigator and 3D visualization of the data. Here we demonstrate this method on the example of a simple distribution model of the molecule Topoisomerase II beta (Topo II beta), nuclear protein that modifies DNA topology. It is found in high concentration in the nucleolus and diffuse in the nucleoplasm, demonstrating a non-membranous inhomogeneity in its distribution. We expand on the simple model by adding additional components to fit fluorescence recovery after photobleaching (FRAP) experiments for protein (GFP) labeled Topo II beta to measure its mobility. This model is then validated by comparing it with alternative scenarios and shown to have predictive power.  相似文献   

15.
Two isoforms of DNA topoisomerase II, alpha and beta, coded by separate genes, are expressed in actively cycling vertebrate cells. Some previous studies have suggested that only topoisomerase II alpha remains associated with chromosomes at mitosis. Here, the distributions of topoisomerase II alpha and beta in mitosis were studied by subcellular fractionation and by immunolocalization. Both isoforms of topoisomerase II were found to remain associated with mitotic chromatin. Topoisomerase II alpha was distributed along chromosome arms throughout mitosis and was highly concentrated at centromeres until mid-anaphase, particularly in some cell types. Topoisomerase II beta showed weak concentration at centromeres in early mitosis in some cell types and was distributed along chromosome arms at every stage of mitosis through telophase. These studies suggest that in most cells both the major topoisomerase II isoforms may play roles in chromatin remodeling during M phase.  相似文献   

16.
The present study shows the expression profile and function of the homeobox gene, satb2 during zebrafish embryonic development. Satb2 was ubiquitously expressed from the 1 cell stage to the 10-somite stage in zebrafish embryos. Satb2 showed stage-specific expression profiles such as in the pronephric duct at 24 hpf, the branchial arches at 36 hpf, and the ganglion cell layer of the retina and fins at 48 hpf. Additionally, satb2 knockdown embryos were arrested at 50–60% epiboly, and transplantation experiments with satb2 knockdown cells showed migration defects. Interestingly, satb2 knockdown cells also exhibited down-regulation of dynamin II and VAMP4, which are involved in exocytosis and endocytosis, respectively. Furthermore, satb2 knockdown cells have a disorganized actin distribution and an underdeveloped external yolk syncytial layer, both of which are involved in epiboly. These results suggest that satb2 has a functional role in epiboly. This role may potentially be the regulation of endo-exocytic vesicle transport-dependent cell migration and/or the regulation of the development of the yolk syncytial layer.  相似文献   

17.
Membrane tethered matrix metalloproteinases (MMPs) cleave a variety of extracellular matrix (ECM) and non-ECM targets and play important roles during embryonic development and tumor progression. Membrane tethered MMPs in particular are important regulators of both tissue invasion and morphogenesis. Much attention has been given to understanding the function of human and mouse MMP14 (also called membrane type-1 MMP, MT1-MMP) and our own data have linked zebrafish Mmp14 to the regulation of gastrulation cell movements. However, less is known regarding the expression and function of other membrane tethered MMPs. We report the cloning and gene expression analysis of zebrafish mmp15a and mmp15b (MT2-MMP) during early embryonic and larval development. Our data show that mmp15a exhibits limited expression prior to segmentation stages and is first detected in the tectum and posterior tailbud. At 24hours post-fertilization (hpf) mmp15a localizes to the caudal hematopoietic tissue, pectoral fin buds, and mandibular arch. By contrast, mmp15b is strongly expressed during gastrula stages before becoming restricted to the polster and anterior neural plate. From 24 to 48hpf, mmp15b expression is detected in the pharyngeal arches, fin buds, otic vesicle, pronephric ducts, proctodeum, tail epidermis, posterior lateral line primordia, and caudal notochord. During the larval period beginning at 72hpf, mmp15b expression becomes restricted to the brain ventricular zone, pharyngeal arches, pectoral fins, and the proctodeum. Many of the mmp15-expressing tissues have been shown to express genes encoding components of the ECM including collagens, fibronectin, and laminins. Our data thus provide a foundation for uncovering the role of Mmp15-dependent pericellular proteolysis during zebrafish embryonic development.  相似文献   

18.
J R Brisson  J P Carver 《Biochemistry》1983,22(15):3671-3680
The solution conformation is presented for representatives of each of the major classes of asparaginyl oligosaccharides. In this report the conformation of alpha(1-3)-, alpha(1-2)-, beta(1-2)-, and beta(1-4)-linked units is described. The conformational properties of these glycopeptides were determined by high-resolution 1H nuclear magnetic resonance in conjunction with potential energy calculations. The NMR parameters that were used in this analysis were chemical shifts and nuclear Overhauser enhancements. Potential energy calculations were used to evaluate the preferred conformers available for the different linkages in glycopeptides and to draw conclusions about the behavior in solution of these molecules. It was found that the linkage conformation of the Man alpha 1-3 residues was not affected by substitution either at the 2-position by alpha Man or beta GlcNAc or at the 4-position by beta GlcNAc or by the presence of a bisecting GlcNAc on the adjacent beta Man residue.  相似文献   

19.
20.
m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme–DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号