首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.

Background

Fluctuations in blood glucose level cause endothelial dysfunction and play a critical role in onset and/or progression of atherosclerosis. We hypothesized that fluctuation in blood glucose levels correlate with vascular endothelial dysfunction and that this relationship can be assessed using common bedside medical devices.

Methods

Fluctuations in blood glucose levels were measured over 24?hours by continuous glucose monitoring (CGM) on admission day 2 in 57 patients with type 2 diabetes mellitus. The reactive hyperemia index (RHI), an index of vascular endothelial function, was measured using peripheral arterial tonometry (EndoPAT) on admission day 3.

Results

The natural logarithmic-scaled RHI (L_RHI) correlated with SD (r=?0.504; P<0.001), the mean amplitude of glycemic excursions (MAGE) (r=?0.571; P<0.001), mean postprandial glucose excursion (MPPGE) (r=?0.411; P=0.001) and percentage of time ≥200?mg/dl (r=?0.292; P=0.028). In 12 patients with hypoglycemia, L_RHI also correlated with the percentage of time at hypoglycemia (r=?0.589; P=0.044). L_RHI did not correlate with HbA1c or fasting plasma glucose levels. Furthermore, L_RHI did not correlate with LDL cholesterol, HDL cholesterol, and triglyceride levels or with systolic and diastolic blood pressures. Finally, multivariate analysis identified MAGE as the only significant determinant of L_RHI.

Conclusions

Fluctuations in blood glucose levels play a significant role in vascular endothelial dysfunction in type 2 diabetes.

Trial registration

UMIN000007581  相似文献   

2.

Background

Uncontrolled hyperglycemia is the main risk factor in the development of diabetic vascular complications. The endothelial cells are the first cells targeted by hyperglycemia. The mechanism of endothelial injury by high glucose is still poorly understood. Heparanase production, induced by hyperglycemia, and subsequent degradation of heparan sulfate may contribute to endothelial injury. Little is known about endothelial injury by heparanase and possible means of preventing this injury.

Objectives

To determine if high glucose as well as heparanase cause endothelial cell injury and if insulin, heparin and bFGF protect cells from this injury.

Methods

Cultured porcine aortic endothelial cells were treated with high glucose (30 mM) and/or insulin (1 U/ml) and/or heparin (0.5 μg/ml) and /or basic fibroblast growth factor (bFGF) (1 ng/ml) for seven days. Cells were also treated with heparinase I (0.3 U/ml, the in vitro surrogate heparanase), plus insulin, heparin and bFGF for two days in serum free medium. Endothelial cell injury was evaluated by determining the number of live cells per culture and lactate dehydrogenase (LDH) release into medium expressed as percentage of control.

Results

A significant decrease in live cell number and increase in LDH release was found in endothelial cells treated with high glucose or heparinase I. Insulin and/or heparin and/or bFGF prevented these changes and thus protected cells from injury by high glucose or heparinase I. The protective ability of heparin and bFGF alone or in combination was more evident in cells damaged with heparinase I than high glucose.

Conclusion

Endothelial cells injured by high glucose or heparinase I are protected by a combination of insulin, heparin and bFGF, although protection by heparin and/or bFGF was variable.  相似文献   

3.

Background

Angiogenesis, the formation of new blood vessels, has become an important target in cancer therapy. Angiogenesis plays an important role in tumor growth and metastasis. Koetjapic acid (KA) is a seco-A-ring oleanene triterpene isolated from S. koetjape. The solvent extract of this plant species was shown previously to have strong antiangiogenic activity; however the active ingredient(s) that conferred the biological activity and the mode of action was not established. Given the high concentration of KA in S. koetjape, an attempt has been made in this study to investigate the antiangiogenic properties of KA.

Results

Treatment with 10-50 μg/ml KA resulted in dose dependent inhibition of new blood vessels growth in ex vivo rat aortic ring assay. KA was found to be non-cytotoxic against HUVECs with IC50 40.97 ± 0.37 μg/ml. KA inhibited major angiogenesis process steps, endothelial cell migration and differentiation as well as VEGF expression.

Conclusions

The non-cytotoxic compound, KA, may be a potent antiangiogenic agent; its activity may be attributed to inhibition of endothelial cells migration and differentiation as well VEGF suppression.  相似文献   

4.

Background

Endothelial function in hypercholesterolemic rabbits is usually evaluated ex vivo on isolated aortic rings. In vivo evaluation requires invasive imaging procedures that cannot be repeated serially.

Aim

We evaluated a non-invasive ultrasound technique to assess early endothelial function in rabbits and compare data with ex vivo measurements.

Methods

Twenty-four rabbits (fed with a cholesterol diet (0.5%) for 2 to 8 weeks) were given progressive infusions of acetylcholine (0.05–0.5 μg/kg/min) and their endothelial function was assessed in vivo by transcutaneous vascular ultrasound of the abdominal aorta. Ex vivo endothelial function was evaluated on isolated aortic rings and compared to in vivo data.

Results

Significant endothelial dysfunction was demonstrated in hypercholesterolemic animals as early as 2 weeks after beginning the cholesterol diet (aortic cross-sectional area variation: -2.9% vs. +4% for controls, p < 0.05). Unexpectedly, response to acetylcholine at 8 weeks was more variable. Endothelial function improved in 5 rabbits while 2 rabbits regained a normal endothelial function. These data corroborated well with ex vivo results.

Conclusion

Endothelial function can be evaluated non-invasively in vivo by transcutaneous vascular ultrasound of the abdominal aorta in the rabbit and results correlate well with ex vivo data.  相似文献   

5.

Background

In the vascular system, Notch receptors and ligands are expressed mainly on arteries, with Delta-like 4 (Dll4) being the only ligand known to be expressed early during the development of arterial endothelial cells and capillaries. Dll4 null embryos die very early in development with severely reduced arterial calibre and lumen and loss of arterial cell identity.

Results

The current detailed analysis of these mutants shows that the arterial defect precedes the initiation of blood flow and that the arterial Dll4 -/- endothelial cells proliferate and migrate more actively. Dll4 -/- mutants reveal a defective basement membrane around the forming aorta and increased endothelial cell migration from the dorsal aorta to peripheral regions, which constitute the main causes of arterial lumen reduction in these embryos. The increased proliferation and migration of Dll4 -/- endothelial cells was found to coincide with increased expression of the receptors VEGFR-2 and Robo4 and with downregulation of the TGF-β accessory receptor Endoglin.

Conclusion

Together, these results strongly suggest that Notch signalling can increase arterial stability and calibre by decreasing the response of arterial endothelial cells to local gradients of pro-angiogenic factors like VEGF.  相似文献   

6.

Introduction

Anti-endothelial cell antibodies (AECAs) are thought to be critical for vasculitides in collagen diseases, but most were directed against molecules localized within the cell and not expressed on the cell surface. To clarify the pathogenic roles of AECAs, we constructed a retroviral vector system for identification of autoantigens expressed on the endothelial cell surface.

Methods

AECA activity in sera from patients with collagen diseases was measured with flow cytometry by using human umbilical vein endothelial cells (HUVECs). A cDNA library of HUVECs was retrovirally transfected into a rat myeloma cell line, from which AECA-positive clones were sorted with flow cytometry. cDNA of the cells was analyzed to identify an autoantigen, and then the clinical characteristics and the functional significance of the autoantibody were evaluated.

Results

Two distinct AECA-positive clones were isolated by using serum immunoglobulin G (IgG) from a patient with systemic lupus erythematosus (SLE). Both clones were identical to cDNA of fibronectin leucine-rich transmembrane protein 2 (FLRT2). HUVECs expressed FLRT2 and the prototype AECA IgG bound specifically to FLRT2-transfected cells. Anti-FLRT2 antibody activity accounted for 21.4% of AECAs in SLE. Furthermore, anti-FLRT2 antibody induced complement-dependent cytotoxicity against FLRT2-expressing cells.

Conclusions

We identified the membrane protein FLRT2 as a novel autoantigen of AECAs in SLE patients by using the retroviral vector system. Anti-FLRT2 antibody has the potential to induce direct endothelial cell cytotoxicity in about 10% of SLE patients and could be a novel molecular target for intervention. Identification of such a cell-surface target for AECAs may reveal a comprehensive mechanism of vascular injury in collagen diseases.  相似文献   

7.

Background

In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis.

Methodology/Principal Findings

Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis.

Conclusions/Significance

This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis.  相似文献   

8.
9.

Key message

An ABC transporter gene ( OsABCG15 ) was proven to be involved in pollen development in rice. The corresponding protein was localized on the plasma membrane using subcellular localization.

Abstract

Wax, cutin, and sporopollenin are important for normal development of the anther cuticle and pollen exine, respectively. Their lipid soluble precursors, which are produced in the tapetum, are then secreted and transferred to the anther and microspore surface for polymerization. However, little is known about the mechanisms underlying the transport of these precursors. Here, we identified and characterized a member of the G subfamily of ATP-binding cassette (ABC) transporters, OsABCG15, which is required for the secretion of these lipid-soluble precursors in rice. Using map-based cloning, we found a spontaneous A-to-C transition in the fourth exon of OsABCG15 that caused an amino acid substitution of Thr-to-Pro in the predicted ATP-binding domain of the protein sequence. This osabcg15 mutant failed to produce any viable pollen and was completely male sterile. Histological analysis indicated that osabcg15 exhibited an undeveloped anther cuticle, enlarged middle layer, abnormal Ubisch body development, tapetum degeneration with a falling apart style, and collapsed pollen grains without detectable exine. OsABCG15 was expressed preferentially in the tapetum, and the fused GFP-OsABCG15 protein was localized to the plasma membrane. Our results suggested that OsABCG15 played an essential role in the formation of the rice anther cuticle and pollen exine. This role may include the secretion of the lipid precursors from the tapetum to facilitate the transfer of precursors to the surface of the anther epidermis as well as to microspores.  相似文献   

10.

Background

The mouse anterior visceral endoderm (AVE) and the chick hypoblast are thought to have homologous roles in the early stages of neural induction and primitive streak formation. In mouse, many regulatory elements directing gene expression to the AVE have been identified. However, there is no technique to introduce DNA into the chick hypoblast that would enable a comparison of their activity and this has hampered a direct comparison of the regulation of gene expression in the mouse and chick extraembryonic endoderm.

Results

Here we describe a new method to introduce DNA into the chick hypoblast, using lipofectamine-mediated transfection. We show that the hypoblast can be easily transfected and that it starts to express a luciferase reporter within 2 hours of transfection. The validity of technique is tested by following the movement and fate of hypoblast cells, which reveals their translocation to the anterior germinal crescent. We then introduce a vector containing GFP driven by the mouse VEcis-Otx2 enhancer (which directs gene expression to the mouse AVE) and we detect activity in the hypoblast.

Conclusion

The new technique for delivering expression constructs to the chick hypoblast will enable studies on gene activity and regulation to be performed in this tissue, which has proved difficult to transfect by electroporation. Our findings also reveal that regulatory elements that direct gene expression to the mouse AVE are active in chick hypoblast, supporting the idea that these two tissues have homologous functions.  相似文献   

11.

Background

Roundabouts are axon guidance molecules that have recently been identified to play a role in vascular guidance as well. In this study, we have investigated gene knockdown analysis of endothelial Robos, in particular roundabout 4 (robo4), the predominant Robo in endothelial cells using small interfering RNA technology in vitro.

Results

Robo1 and Robo4 knockdown cells display distinct activity in endothelial cell migration assay. The knockdown of robo4 abrogated the chemotactic response of endothelial cells to serum but enhanced a chemokinetic response to Slit2, while robo1 knockdown cells do not display chemotactic response to serum or VEGF. Robo4 knockdown endothelial cells unexpectedly show up regulation of Rho GTPases. Zebrafish Robo4 rescues both Rho GTPase homeostasis and serum reduced chemotaxis in robo4 knockdown cells. Robo1 and Robo4 interact and share molecules such as Slit2, Mena and Vilse, a Cdc42-GAP. In addition, this study mechanistically implicates IRSp53 in the signaling nexus between activated Cdc42 and Mena, both of which have previously been shown to be involved with Robo4 signaling in endothelial cells.

Conclusion

This study identifies specific components of the Robo signaling apparatus that work together to guide directional migration of endothelial cells.  相似文献   

12.

Introduction

Rheumatoid arthritis (RA) is an inflammatory disease associated with accelerated atherosclerosis and high risk of cardiovascular (CV) disease. Since genome-wide association studies demonstrated association between rs599839 polymorphism and coronary artery disease, in the present study we assessed the potential association of this polymorphism with endothelial dysfunction, an early step in atherogenesis.

Methods

A total of 128 RA patients without history of CV events were genotyped for rs599839 A/G polymorphism. The presence of endothelial dysfunction was assessed by brachial ultrasonography (brachial flow-mediated endothelium-dependent (FMD)).

Results

Patients carrying the allele G exhibited more severe endothelial dysfunction (FMD%: 4.61 ± 3.94%) than those carrying the wild allele A (FMD%: 6.01 ± 5.15%) (P = 0.08). Adjustment for gender, age at the time of study, follow-up time and classic CV risk factors disclosed a significant association between the rs599839 polymorphism and FMD (G vs. A: P = 0.0062).

Conclusions

Our results confirm an association of the rs599839 polymorphism with endothelial dysfunction in RA.  相似文献   

13.

Background

Gonadotropin releasing hormone (GnRH) is responsible for stimulation of gonadotropic hormone (GtH) in the hypothalamus-pituitary-gonadal axis (HPG). The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio).

Results

We have characterized a zebrafish [Trp7, Leu8] or salmon (s) GnRH variant, gnrh 3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH), was shown capable of driving cell specific reporter gene expression in transgenic zebrafish.

Conclusions

The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar) GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.
  相似文献   

14.

Background

The adhesion of Plasmodium falciparum parasitized red blood cell (PRBC) to human endothelial cells (EC) induces inflammatory processes, coagulation cascades, oxidative stress and apoptosis. These pathological processes are suspected to be responsible for the blood-brain-barrier and other organs' endothelial dysfunctions observed in fatal cases of malaria. Atorvastatin, a drug that belongs to the lowering cholesterol molecule family of statins, has been shown to ameliorate endothelial functions and is widely used in patients with cardiovascular disorders.

Methods

The effect of this compound on PRBC induced endothelial impairments was assessed using endothelial co-culture models.

Results

Atorvastatin pre-treatment of EC was found to reduce the expression of adhesion molecules and P. falciparum cytoadherence, to protect cells against PRBC-induced apoptosis and to enhance endothelial monolayer integrity during co-incubation with parasites.

Conclusions

These results might suggest a potential interest use of atorvastatin as a protective treatment to interfere with the pathophysiological cascades leading to severe malaria.
  相似文献   

15.

Aims

Type 2 diabetes is characterised by increased plasma concentrations of pro-inflammatory cytokines [such as tumour necrosis factor – alpha; TNF-α] and soluble forms of adhesion molecules involved in leukocyte – endothelial interactions. These molecules are synthesised as transmembrane proteins and the plasma soluble forms are generated by ectodomain cleavage from the cell surface by members of the ADAM [a disintegrin and metalloproteinase] proteinase family. We hypothesised that plasma low density lipoprotein [LDL] from subjects with Type 2 diabetes would influence in vitro monocytic ADAM and matrix metalloproteinase [MMP] gene expression differently compared to control LDL.

Methods

We examined relative mRNA expression by real time PCR in a monocytic cell line [THP-1] cultured for 4, 8 and 24 hrs with human plasma LDL derived from subjects with [n = 5] or without [n = 4] Type 2 diabetes. Gene expression for MMP-1 and 9, and ADAM – 8, 15, 17 and 28 was studied.

Results

Type 2 diabetes LDL significantly increased gene expression of MMP – 1 [p < 0.01] MMP – 9 [p < 0.001], and ADAM 17 [p < 0.05], – 28 [p < 0.01] and – 15 [p < 0.01] compared to control LDL. Type 2 diabetes LDL had disparate effects on inhibitors of MMP.

Conclusion

These data suggest that Type 2 diabetes LDL could lead to increased adhesion molecule and TNF alpha cell surface shedding, and vascular plaque instability, by promoting increased expression of ADAM and MMP genes.  相似文献   

16.

Purpose

A wealth of preclinical information, as well as a modest amount of clinical information, indicates that dendritic cell vaccines have therapeutic potential. The aim of this work was to assess the immune response, disease progression, and post-treatment survival of ER/PR double-negative stage II/IIIA breast cancer patients vaccinated with autologous dendritic cells pulsed with autologous tumor lysates.

Methods

Dendritic cell (DC) vaccines were generated from CD14+ precursors pulsed with autologous tumor lysates. DCs were matured with defined factors that induced surface marker and cytokine production. Individuals were immunized intradermally four times. Specific delayed type IV hypersensitivity (DTH) reaction, ex vivo cytokine production, and lymphocyte subsets were determined for the evaluation of the therapeutic efficiency. Overall survival and disease progression rates were analyzed using Kaplan–Meier curves and compared with those of contemporaneous patients who were not administered DC vaccines.

Results

There were no unanticipated or serious adverse effects. DC vaccines elicited Th1 cytokine secretion and increased NK cells, CD8+ IFN-γ+ cells but decreased the percentage of CD3+ T cells and CD3+ HLA-DR+ T cells in the peripheral blood. Approximately 58% (18/31) of patients had a DTH-positive reaction. There was no difference in overall survival between the patients with and without DC vaccine. The 3-year progression-free survival was significantly prolonged: 76.9% versus 31.0% (with vs. without DC vaccine, p?Conclusion Our findings strongly suggest that tumor lysate-pulsed DCs provide a standardized and widely applicable source of breast cancer antigens that are very effective in evoking anti-breast cancer immune responses.  相似文献   

17.

Background

The protection afforded by human erythrocyte polymorphisms against the malaria parasite, Plasmodium falciparum, has been proposed to be due to reduced ability of the parasite to invade or develop in erythrocytes. If this were the case, variable levels of parasitaemia and rates of seroconversion to infected-erythrocyte variant surface antigens (VSA) should be seen in different host genotypes.

Methods

To test this hypothesis, P. falciparum parasitaemia and anti-VSA antibody levels were measured in a cohort of 555 asymptomatic children from an area of intense malaria transmission in Papua New Guinea. Linear mixed models were used to investigate the effect of α+-thalassaemia, complement receptor-1 and south-east Asian ovalocytosis, as well as glucose-6-phosphate dehydrogenase deficiency and ABO blood group on parasitaemia and age-specific seroconversion to VSA.

Results

No host polymorphism showed a significant association with both parasite prevalence/density and age-specific seroconversion to VSA.

Conclusion

Host erythrocyte polymorphisms commonly found in Papua New Guinea do not effect exposure to blood stage P. falciparum infection. This contrasts with data for sickle cell trait and highlights that the above-mentioned polymorphisms may confer protection against malaria via distinct mechanisms.  相似文献   

18.

Background

The asymmetric segregation of determinants during cell division is a fundamental mechanism for generating cell fate diversity during development. In Drosophila, neural precursors (neuroblasts) divide in a stem cell-like manner generating a larger apical neuroblast and a smaller basal ganglion mother cell. The cell fate determinant Prospero and its adapter protein Miranda are asymmetrically localized to the basal cortex of the dividing neuroblast and segregated into the GMC upon cytokinesis. Previous screens to identify components of the asymmetric division machinery have concentrated on embryonic phenotypes. However, such screens are reaching saturation and are limited in that the maternal contribution of many genes can mask the effects of zygotic loss of function, and other approaches will be necessary to identify further genes involved in neuroblast asymmetric division.

Results

We have performed a genetic screen in the third instar larval brain using the basal localization of Miranda as a marker for neuroblast asymmetry. In addition to the examination of pupal lethal mutations, we have employed the MARCM (Mosaic Analysis with a Repressible Cell Marker) system to generate postembryonic clones of mutations with an early lethal phase. We have screened a total of 2,300 mutagenized chromosomes and isolated alleles affecting cell fate, the localization of basal determinants or the orientation of the mitotic spindle. We have also identified a number of complementation groups exhibiting defects in cell cycle progression and cytokinesis, including both novel genes and new alleles of known components of these processes.

Conclusion

We have identified four mutations which affect the process of neuroblast asymmetric division. One of these, mapping to the imaginal discs arrested locus, suggests a novel role for the anaphase promoting complex/cyclosome (APC/C) in the targeting of determinants to the basal cortex. The identification and analysis of the remaining mutations will further advance our understanding of the process of asymmetric cell division. We have also isolated a number of mutations affecting cell division which will complement the functional genomics approaches to this process being employed by other laboratories. Taken together, these results demonstrate the value of mosaic screens in the identification of genes involved in neuroblast division.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号