首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The interactions of the atypical benzodiazepine 4'-chlorodiazepam (Ro 5-4864) with functionally expressed human GABAA receptor cDNAs were determined. Cotransfection of human α2, β1, and γ2 subunits was capable of reconstituting a 4'-chlorodiazepam recognition site as revealed by a dose-dependent potentiation of t -[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to the GABA-activated chloride channel. This site is found on GABAA receptor complexes containing sites for GABA agonist-like benzodiazepines and neuroactive steroids. The importance of the α subunit was further demonstrated as substitution of either α1 or α3 for the α2 subunit did not reconstitute a 4'-chlorodiazepam recognition site that was capable of modulating [35S]TBPS binding under the same experimental conditions. The 4'-chlorodiazepam modulatory site was shown to be distinct from the benzodiazepine site, but the phenylquinolines PK 8165 and PK 9084 produced effects similar to 4'-chlorodiazepam, consistent with the previous analysis of the 4'-chlorodiazepam site in brain homogenates. Further analysis of the subunit requirements revealed that coexpression of α2 and β1 alone reconstituted a 4'-chlorodiazepam recognition site. It is interesting, however, that the 4'-chlorodiazepam site was found to inhibit [35S]TBPS binding to the GABA-activated chloride channel. Thus, the 4'-chlorodiazepam site may be reconstituted with only the α and β polypeptides.  相似文献   

2.
3.
Abstract: Oocytes from the frog Xenopus laevis were shown recently to express native nicotinic acetylcholine receptors after injection with purified Torpedo electroplaque membrane vesicles. Injection of Xenopus oocytes with rat cortical or nigral synaptosomes has now been shown to result in the expression of γ-aminobutyric acid type A (GABAA) receptor-mediated Cl currents. Electrophysiological characterization of the responses of these receptors to GABA and other agents revealed that they were incorporated into the oocyte membrane and that they retained their original pharmacological properties, such as sensitivity to Cl channel blockers, benzodiazepines, and general anesthetics. These results suggest that this approach to the expression of heterologous proteins in Xenopus oocytes may facilitate the study of native synaptic proteins derived from brain tissue.  相似文献   

4.
Abstract: We studied whether microtubule organization is important for actions of ethanol on GABAA ergic responses by testing the effects of microtubule depolymerization on ethanol enhancement of GABA action in mouse L(tk) cells stably transfected with GABAA receptor α1β1γ2L subunits. The microtubule-disrupting agents colchicine, taxol, and vinblastine completely blocked ethanol-induced enhancement of muscimol-stimulated chloride uptake. β-Lumicolchicine, a colchicine analogue that does not disrupt microtubules, had no effect on ethanol action. Colchicine did not alter the potentiating actions of flunitrazepam or pentobarbital on muscimol-stimulated chloride uptake. Thus, colchicine specifically inhibited the potentiating action of ethanol. From these findings, we conclude that intact microtubules are required for ethanol-induced enhancement of GABAA responses and suggest that a mechanism involving microtubules produces posttranslational modifications that are necessary for ethanol sensitivity in this cell system.  相似文献   

5.
Abstract: Most general anesthetics produce two distinct actions at GABAA receptors. Thus, these drugs augment GABA-gated chloride currents (referred to as an indirect action) and, at higher concentrations, elicit chloride currents in the absence of GABA (referred to as a direct action). Because a β subunit appears to be required for the direct action of intravenous anesthetics in recombinant GABAA receptors, site-directed mutagenesis of the β3 subunit was performed to identify amino acid residues that are critical for this action. In HEK293 cells expressing a prototypical GABAA receptor composed of α1β3γ2 subunits, mutation of amino acid 290 from Asn to Ser dramatically reduced both etomidate-induced chloride currents and its ability to stimulate [3H]flunitrazepam binding. By contrast, the ability of etomidate to augment GABA-gated chloride currents and GABA-enhanced [3H]flunitrazepam binding was retained. The demonstration that the direct, but not the indirect, actions of etomidate are dependent on β3(Asn290) indicates that the dual actions of this intravenous anesthetic at GABAA receptors are mediated via distinct loci.  相似文献   

6.
Abstract: The pentameric subunit composition of a large population (36%) of the cerebellar granule cell GABAA receptors that show diazepam (or clonazepam)-insensitive [3H]Ro 15-4513 binding has been determined by immunoprecipitation with subunit-specific antibodies. These receptors have α6, α1, γ2S, γ2L, and β2 or β3 subunits colocalizing in the same receptor complex.  相似文献   

7.
8.
Abstract: Tolerance to and withdrawal from pentobarbital were induced in rats by continuous intracerebroventricular infusion via subcutaneously implanted osmotic minipumps. In situ hybridization of GABAA receptor α1- and β3-subunit mRNA was conducted using synthetic 3'- end 35S-dATP-labeled oligodeoxynucleotide probes. Results were quantified by film densitometry. In animals that were tolerant to pentobarbital, levels of α1-subunit mRNA were decreased in hippocampus, superior colliculus, and inferior colliculus, but levels of β3-subunit mRNA were not affected. Dramatically increased levels of GABAA receptor subunit mRNA were observed in animals 24 h after withdrawal from chronic pentobarbital treatment. These increases occurred in cerebral cortex and cerebellum for the α1 subunit and in cerebral cortex only for the β3-subunit. These data provide further support to the structural and pharmacological GABAA receptor heterogeneity in discrete brain areas. The observed changes of subunit expression may underlie, at least in part, the receptor up- and down-regulation observed in receptor ligand binding studies.  相似文献   

9.
Abstract: Molecular cloning has revealed that there are six classes of subunits capable of forming GABA-gated chloride channel receptors. GABAA receptors are composed of α, β, γ, δ, and ε/χ subunits, whereas GABAC receptors appear to contain ρ subunits. However, retinal cells exhibiting GABAC responses express α, β, and ρ subunits, raising the possibility that GABAC receptors may be a mixture of subunit classes. Using in vitro translated protein, we determined that human GABAA receptor subunits α1, α5, and β1 did not coimmunoprecipitate with full-length ρ1, ρ2, or the N-terminal domain of ρ1 that contains signals for ρ-subunit interaction. To explore the molecular mechanism underlying these apparently exclusive combinations, chimeric subunits were created and tested for interaction with the wild-type subunits. Transfer of the N terminus of β1 to ρ1 created a β1ρ1 chimera that coimmunoprecipitated with the α1 subunit but not with the ρ2 subunit. Furthermore, exchanging the N terminus of the ρ1 subunit with the corresponding region of β1 produced a ρ1β1 chimera that interfered with ρ1 receptor expression in Xenopus oocytes, whereas the full-length β1 subunit had no effect. Together, these results indicate that sequences in the N termini direct assembly of ρ subunits and GABAA subunits into GABAC and GABAA receptors, respectively.  相似文献   

10.
Abstract: Sequence variation was found in cDNA coding for the extracellular domain of the rat γ-aminobutyric acid type A (GABAA) receptor α6 subunit. About 20% of polymerase chain reaction (PCR)-amplified α6 cDNA prepared from rat cerebellar mRNA lacked nucleotides 226–255 as estimated by counting single-stranded phage plaques hybridized specifically to the short (α6S) and long (wild-type) forms of the α6 mRNA. Genomic PCR revealed an intron located upstream of the 30-nucleotide sequence. Both splice forms were detected in the cerebellum by in situ hybridization. Recombinant receptors, resulting from coexpression of the α6S subunit with the GABAA receptor β2 and γ2 subunits in human embryonic kidney 293 cells, were inactive at binding [3H]muscimol and [3H]Ro 15-4513. In agreement, injection of complementary RNAs encoding the same subunits into Xenopus oocytes produced only weak GABA-induced currents, indistinguishable from those produced by β2γ2 receptors. Therefore, the 10 amino acids encoded by the 30-nucleotide fragment may be essential for the correct assembly or folding of the α6 subunit-containing receptors.  相似文献   

11.
Abstract : We have isolated and characterized overlapping cDNAs encoding a novel, voltage-gated Ca2+ channel α1 subunit, α1H, from a human medullary thyroid carcinoma cell line. The α1H subunit is structurally similar to previously described α1 subunits. Northern blot analysis indicates that α1H mRNA is expressed throughout the brain, primarily in the amygdala, caudate nucleus, and putamen, as well as in several nonneuronal tissues, with relatively high levels in the liver, kidney, and heart. Ba2+ currents recorded from human embryonic kidney 293 cells transiently expressing α1H activated at relatively hyperpolarized potentials (-50 mV), rapidly inactivated (τ = 17 ms), and slowly deactivated. Similar results were observed in Xenopus oocytes expressing α1H. Singlechannel measurements in human embryonic kidney 293 cells revealed a single-channel conductance of ~9 pS. These channels are blocked by Ni2+ (IC50 = 6.6 μ M ) and the T-type channel antagonists mibefradil (~50% block at 1 μ M ) and amiloride (IC50 = 167 μ M ). Thus, α1H-containing channels exhibit biophysical and pharmacological properties characteristic of low voltage-activated, or T-type, Ca2+ channels.  相似文献   

12.
Abstract: Polyclonal antibodies were raised to synthetic peptides having amino acid sequences corresponding with the N- or C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α5-subunit. These anti-peptide α5(2–10) or anti-peptide α5(427–433) antibodies reacted specifically with GABAA receptors purified from the brains of 5–10-day-old rats in an enzyme-linked immunosorbent assay and were able to dose-dependently immunoprecipitate up to 6.3 or 13.1% of the GABAA receptors present in the incubation, respectively. In immunoblots, each of these antibodies reacted with the same two protein bands with apparent molecular mass of 53 or 57 kDa. After exhaustive treatment of purified GABAA receptors with N -Glycanase, each of these antibodies identified two proteins with apparent molecular masses of 46 and 48 kDa. Additional treatment of GABAA receptors with neuraminidase and O -Glycanase resulted in an apparently single protein with molecular mass of 47 kDa, which again was identified by both the anti-peptide α5(2–10) and the anti-peptide α5(427–433) antibody. These results indicate the existence of at least two different α5-sub-units of the GABAA receptor that differ in their carbohydrate content. In contrast to other α- or β-subunits of GABAA receptors so far investigated, at least one of these two α5-subunits contains O-linked carbohydrates.  相似文献   

13.
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of α1S205C and α1T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (–NCS). We also provide new data that identify α1H101C and α1N102C as exclusive sites of the reaction of a diazepam derivative where the –Cl atom is replaced by a –NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of α1β2γ2 receptors.  相似文献   

14.
Abstract: Ethanol dependence and tolerance involve perturbation of GABAergic neurotransmission. Previous studies have demonstrated that ethanol treatment regulates the function and expression of GABAA receptors throughout the CNS. Conceivably, changes in receptor function may be associated with alterations of subunit composition. In the present study, a comprehensive (1–12 weeks) ethanol treatment paradigm was used to evaluate changes in GABAA receptor subunit expression in several brain regions including the cerebellum, cerebral cortex, ventral tegmental area (VTA) (a region implicated in drug reward/dependence), and the hippocampus (a region involved in memory/cognition). Expression of α1 and α5 subunits was regulated by ethanol in a region-specific and time-dependent manner. Following 2–4 weeks of administration, cortical and cerebellar α1 and α5 subunit immunoreactivity was reduced. In the VTA, levels of α1 subunit immunoreactivity were significantly decreased after 12 weeks but not 1–4 weeks of treatment. Hippocampal α1 subunit immunoreactivity and mRNA content were also significantly reduced after 12 but not after 4 weeks of treatment. In contrast, α5 mRNA content was increased in this brain region. These data indicate that chronic ethanol administration alters GABAA receptor subunit expression in the VTA and hippocampus, effects that may play a role in the abuse potential and detrimental cognitive effects of alcohol.  相似文献   

15.
The activity of many receptors and ion channels in the nervous system can be regulated by redox-dependent mechanisms. Native and recombinant GABAA receptors are modulated by endogenous and pharmacological redox agents. However, the sensitivity of GABAC receptors to redox modulation has not been demonstrated. We studied the actions of different reducing and oxidizing agents on human homomeric GABAρ1 receptors expressed in Xenopus laevis oocytes. The reducing agents dithiothreitol (2 mM) and N -acetyl- l -cysteine (1 mM) potentiated GABA-evoked Cl currents recorded by two-electrode voltage-clamp, while the oxidants 5-5'-dithiobis-2-nitrobenzoic acid (500 μM) and oxidized dithiothreitol (2 mM) caused inhibition. The endogenous antioxidant glutathione (5 mM) also enhanced GABAρ1 receptor-mediated currents while its oxidized form GSSG (3 mM) had inhibitory effects. All the effects were rapid and easily reversible. Redox modulation of GABAρ1 receptors was strongly dependent on the GABA concentration; dose–response curves for GABA were shifted to the left in the presence of reducing agents, whereas oxidizing agents produced the opposite effect, without changes in the maximal response to GABA and in the Hill coefficient. Our results demonstrate that, similarly to GABAA receptors and other members of the cys-loop receptor superfamily, GABAC receptors are subjected to redox modulation.  相似文献   

16.
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity.  相似文献   

17.
Abstract: GABAA and benzodiazepine receptors are allosterically coupled, and occupation of either receptor site increases the affinity of the other. Chronic exposure of primary neuronal cultures to benzodiazepine agonists reduces these allosteric interactions. Neurons express multiple GABAA receptor subunits, and it has been suggested that uncoupling is due to changes in the subunit composition of the receptor. To determine if uncoupling could be observed with expression of defined subunits, mouse Ltk cells stably transfected with GABAA receptors (bovine α1, β1, and γ2L subunits) were treated with flunitrazepam (Flu) or clonazepam. The increase in [3H]Flu binding affinity caused by GABA (GABA shift or coupling) was significantly reduced in cells treated chronically with the benzodiazepines, whereas the K D and B max of [3H]Flu binding were unaffected. The uncoupling caused by clonazepam treatment occurred rapidly with a t 1/2 of ∼30 min. The EC50 for clonazepam treatment was ∼0.3 µ M , and cotreatment with the benzodiazepine antagonist Ro 15-1788 (5.6 µ M ) prevented the effect of clonazepam. The uncoupling observed in this system was not accompanied by receptor internalization, is unlikely to be due to changes in receptor subunit composition, and probably represents posttranslational changes. The rapid regulation of allosteric coupling by benzodiazepine treatment of the stably transfected cells should provide insights to the mechanisms of coupling between GABAA and benzodiazepine receptors as well as benzodiazepine tolerance.  相似文献   

18.
Borrelia hermsii , a spirochaete responsible for relapsing fever in humans, grows to high density in the bloodstream and causes thrombocytopenia. We show here that B. hermsii binds to human platelets. Extended culture in bacteriological medium resulted in both diminished infectivity in vivo and diminished platelet binding in vitro . Platelet binding was promoted by the platelet integrin αIIbβ3: the bacterium bound to purified integrin αIIbβ3, and bacterial binding to platelets was diminished by αIIbβ3 antagonists or by a genetic defect in this integrin. Integrin αIIbβ3 undergoes a conformational change upon platelet activation, and bacteria bound more efficiently to activated rather than resting platelets. Nevertheless, B. hermsii bound at detectable levels to preparations of resting platelets. The bacterium did not recognize a point mutant of αIIbβ3 that cannot acquire an active conformation. Rather, B. hermsii was capable of triggering platelet and integrin αIIbβ3 activation, as indicated by the expression of the platelet activation marker P-selectin and integrin αIIbβ3 in its active conformation. The degree of platelet activation varied depending upon bacterial strain and growth conditions. Prostacyclin I2, an inhibitor of platelet activation, diminished bacterial attachment, indicating that activation enhanced bacterial binding. Thus, B. hermsii signals the host cell to activate a critical receptor for the bacterium, thereby promoting high-level bacterial attachment.  相似文献   

19.
20.
Abstract: The large intracellular loop (IL) of the γ2 subunit of the cloned human γ-aminobutyric acidA (GABAA) receptor (γ2IL) was expressed in bacteria as glutathione- S -transferase and staphylococcal protein A fusion proteins. Mice were immunized with the fusion proteins (one protein per animal), and monoclonal antibodies were obtained. Six monoclonal antibodies reacted with the γ2IL moiety of the fusion proteins. Three of these monoclonal antibodies also immunoprecipitated a high proportion of the GABAA/benzodiazepine receptors from bovine and rat brain and reacted with a wide 44,000–49,000-Mr peptide band in immunoblots of affinity-purified GABAA receptors. These monoclonal antibodies are valuable reagents for the molecular characterization of the GABAA receptors in various brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号