首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
采用生物信息学方法,利用核酸、蛋白数据库对普通小麦祖先种乌拉尔图小麦(Triticum urartu L.)和粗山羊草(Aegilops tauschii L.)NAC转录因子基因家族进行分析,分别鉴定出107、126个NAC蛋白家族成员。根据拟南芥、水稻NAC基因家族分类系统,将其分为15个亚族。通过与抗逆相关基因TaNAC2a进行同源进化树分析,发现5个TuNAC、6个AetNAC基因与其高度同源,对这些基因的蛋白结构域、基因结构、启动子顺式作用元件及组织表达特性进行分析。结果表明,11个NAC蛋白具有典型的NAC结构域。进化关系较近的基因具有相似基因结构;启动子区域预测发现其均含有逆境胁迫响应作用元件。实时荧光定量PCR结果显示,TuNAC、AetNAC基因分别在乌拉尔图小麦和粗山羊草根、胚芽鞘、叶组织中均有表达,并呈现出明显的组织表达特异性。通过芯片表达数据和逆境胁迫基因表达试验,推测AetNAC2c基因可能参与植物干旱胁迫响应,AetNAC2b可能参与调控植物的耐旱、耐低温胁迫反应。上述分析结果为普通小麦祖先种基因家族的系统研究,优异候选功能基因的预测、筛选提供了试验依据。  相似文献   

17.

Background

MicroRNAs (miRNAs) regulate numerous crucial abiotic stress processes in plants. However, information is limited on their involvement in cadmium (Cd) stress response and tolerance mechanisms in plants, including ramie (Boehmeria nivea L.) that produces a number of economic valuable as an important natural fibre crop and an ideal crop for Cd pollution remediation.

Results

Four small RNA libraries of Cd-stressed and non-stressed leaves and roots of ramie were constructed. Using small RNA-sequencing, 73 novel miRNAs were identified. Genome-wide expression analysis revealed that a set of miRNAs was differentially regulated in response to Cd stress. In silico target prediction identified 426 potential miRNA targets that include several uptake or transport factors for heavy metal ions. The reliability of small RNA sequencing and the relationship between the expression levels of miRNAs and their target genes were confirmed by quantitative PCR (q-PCR). We showed that the expression patterns of miRNAs obtained by q-PCR were consistent with those obtained from small RNA sequencing. Moreover, we demonstrated that the expression of six randomly selected target genes was inversely related to that of their corresponding miRNAs, indicating that the miRNAs regulate Cd stress response in ramie.

Conclusions

This study enriches the number of Cd-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in ramie during Cd stress.
  相似文献   

18.
19.
20.
The challenge of climate change makes it mandatory to improve tolerance to drought stress in bread wheat (Triticum aestivum) via biotechnological approaches. Drought stress experiment was conducted followed by RNA-Seq analysis for leaves of two wheat cultivars namely Giza 168 and Gemmiza 10 with contrasting genotypes. Expression patterns of the regulated stress-related genes and concordantly expressed TFs were detected, then, validated via qPCR for two loss-of-function mutants in Arabidopsis background harboring mutated genes analogue to those in wheat. Drought-stress related genes were searched for concordantly expressed TFs and a total of eight TFs were shown to coexpress with 14 stress-related genes. Among these genes, one TF belongs to the zinc finger protein CONSTANS family and proved via qPCR to drive expression of a gene encoding a speculative TF namely zinc transporter 3-like and two other stress related genes encoding tryptophan synthase alpha chain and asparagine synthetase. Known functions of the two TFs under drought stress complement those of the two concordantly expressed stress-related genes, thus, it is likely that they are related. This study highlights the possibility to utilize metabolic engineering approaches to decipher and incorporate existing regulatory frameworks under drought stress in future breeding programs of bread wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号