首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Succinate:quinone oxidoreductase (SQR) from Bacillus subtilis consists of two hydrophilic protein subunits comprising succinate dehydrogenase, and a di-heme membrane anchor protein harboring two putative quinone binding sites, Q(p) and Q(d). In this work we have used spectroelectrochemistry to study the electronic communication between purified SQR and a surface modified gold capillary electrode. In the presence of two soluble quinone mediators the midpoint potentials of both hemes were revealed essentially as previously determined by conventional redox titration (heme b(H), E(m)=+65 mV, heme b(L), E(m)=-95 mV). In the absence of mediators the enzyme still communicated with the electrode, albeit with a reproducible hysteresis, resulting in the reduction of both hemes occurring approximately at the midpoint potential of heme b(L), and with a pronounced delay of reoxidation. When the specific inhibitor 2-n-heptyl-4 hydroxyquinoline N-oxide (HQNO), which binds to Q(d) in B. subtilis SQR, was added together with the two quinone mediators, rapid reductive titration was still possible which can be envisioned as an electron transfer occurring via the HQNO insensitive Q(p) site. In contrast, the subsequent oxidative titration was severely hampered in the presence of HQNO, in fact it completely resembled the unmediated reaction. If mediators communicate with Q(p) or Q(d), either event is followed by very rapid electron redistribution within the enzyme. Taken together, this strongly suggests that the accessibility of Q(p) depended on the redox state of the hemes. When both hemes were reduced, and Q(d) was blocked by HQNO, quinone-mediated communication via the Q(p) site was no longer possible, revealing a redox-dependent conformational change in the membrane anchor domain.  相似文献   

2.
Cytochrome bd is a terminal component of the respiratory chain of Escherichia coli catalyzing reduction of molecular oxygen to water. It contains three hemes, b558, b595, and d. The detailed spectroelectrochemical redox titration and numerical modeling of the data reveal significant redox interaction between the low-spin heme b558 and high-spin heme b595, whereas the interaction between heme d and either hemes b appears to be rather weak. However, the presence of heme d itself decreases much larger interaction between the two hemes b. Fitting the titration data with a model where redox interaction between the hemes is explicitly included makes it possible to extract individual absorption spectra of all hemes. The α- and β-band reduced-minus-oxidized difference spectra agree with the data published earlier ([22] J.G. Koland, M.J. Miller, R.B. Gennis, Potentiometric analysis of the purified cytochrome d terminal oxidase complex from Escherichia coli, Biochemistry 23 (1984) 1051-1056., and [23] R.M. Lorence, J.G. Koland, R.B. Gennis, Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of “cytochrome a1” as cytochrome b595, Biochemistry 25 (1986) 2314-2321.). The Soret band spectra show λmax = 429.5 nm, λmin ≈ 413 nm (heme b558), λmax = 439 nm, λmin ≈ 400 ± 1 nm (heme b595), and λmax = 430 nm, λmin = 405 nm (heme d). The spectral contribution of heme d to the complex Soret band is much smaller than those of either hemes b; the Soret/α (ΔA430A629) ratio for heme d is 1.6.  相似文献   

3.
Cytochrome bd is a terminal quinol:O2 oxidoreductase of respiratory chains of many bacteria. It contains three hemes, b558, b595, and d. The role of heme b595 remains obscure. A CO photolysis/recombination study of the membranes of Escherichia coli containing either wild type cytochrome bd or inactive E445A mutant was performed using nanosecond absorption spectroscopy. We compared photoinduced changes of heme d-CO complex in one-electron-reduced, two-electron-reduced, and fully reduced states of cytochromes bd. The line shape of spectra of photodissociation of one-electron-reduced and two-electron-reduced enzymes is strikingly different from that of the fully reduced enzyme. The difference demonstrates that in the fully reduced enzyme photolysis of CO from heme d perturbs ferrous heme b595 causing loss of an absorption band centered at 435 nm, thus supporting interactions between heme b595 and heme d in the di-heme oxygen-reducing site, in agreement with previous works. Photolyzed CO recombines with the fully reduced enzyme monoexponentially with τ ∼ 12 μs, whereas recombination of CO with one-electron-reduced cytochrome bd shows three kinetic phases, with τ ∼ 14 ns, 14 μs, and 280 μs. The spectra of the absorption changes associated with these components are different in line shape. The 14 ns phase, absent in the fully reduced enzyme, reflects geminate recombination of CO with part of heme d. The 14-μs component reflects bimolecular recombination of CO with heme d and electron backflow from heme d to hemes b in ∼ 4% of the enzyme population. The final, 280-μs component, reflects return of the electron from hemes b to heme d and bimolecular recombination of CO in that population. The fact that even in the two-electron-reduced enzyme, a nanosecond geminate recombination is observed, suggests that namely the redox state of heme b595, and not that of heme b558, controls the pathway(s) by which CO migrates between heme d and the medium.  相似文献   

4.
Duodenal cytochrome b (Dcytb or Cybrd1) is an iron-regulated protein, highly expressed in the duodenal brush border membrane. It has ferric reductase activity and is believed to play a physiological role in dietary iron absorption. Its sequence identifies it as a member of the cytochrome b561 family. A His-tagged construct of human Dcytb was expressed in insect Sf9 cells and purified. Yields of protein were increased by supplementation of the cells with 5-aminolevulinic acid to stimulate heme biosynthesis. Quantitative analysis of the recombinant Dcytb indicated two heme groups per monomer. Site-directed mutagenesis of any of the four conserved histidine residues (His 50, 86, 120 and 159) to alanine resulted in much diminished levels of heme in the purified Dcytb, while mutation of the non-conserved histidine 33 had no effect on the heme content. This indicates that those conserved histidines are heme ligands, and that the protein cannot stably bind heme if any of them is absent. Recombinant Dcytb was reduced by ascorbate under anaerobic conditions, the extent of reduction being 67% of that produced by dithionite. It was readily reoxidized by ferricyanide. EPR spectroscopy showed signals from low-spin ferriheme, consistent with bis-histidine coordination. These comprised a signal at gmax = 3.7 corresponding to a highly anisotropic species, and another at gmax = 3.18; these species are similar to those observed in other cytochromes of the b561 family, and were reducible by ascorbate. In addition another signal was observed in some preparations at gmax = 2.95, but this was unreactive with ascorbate. Redox titrations indicated an average midpoint potential for the hemes in Dcytb of + 80 mV ± 30 mV; the data are consistent with either two hemes at the same potential, or differing in potential by up to 60 mV. These results indicate that Dcytb is similar to the ascorbate-reducible cytochrome b561 of the adrenal chromaffin granule, though with some differences in midpoint potentials of the hemes.  相似文献   

5.
Dimeric cytochromes bc are central components of photosynthetic and respiratory electron transport chains. In their catalytic core, four hemes b connect four quinone (Q) binding sites. Two of these sites, Qi sites, reduce quinone to quinol (QH2) in a step-wise reaction, involving a stable semiquinone intermediate (SQi). However, the interaction of the SQi with the adjacent hemes remains largely unexplored. Here, by revealing the existence of two populations of SQi differing in paramagnetic relaxation, we present a new mechanistic insight into this interaction. Benefiting from a clear separation of these SQi species in mutants with a changed redox midpoint potential of hemes b, we identified that the fast-relaxing SQi (SQiF) corresponds to the form magnetically coupled with the oxidized heme bH (the heme b adjacent to the Qi site), while the slow-relaxing SQi (SQiS) reflects the form present alongside the reduced (and diamagnetic) heme bH. This so far unreported SQiF calls for a reinvestigation of the thermodynamic properties of SQi and the Qi site. The existence of SQiF in the native enzyme reveals a possibility of an extended electron equilibration within the dimer, involving all four hemes b and both Qi sites. This substantiates the predicted earlier electron transfer acting to sweep the b-chain of reduced hemes b to diminish generation of reactive oxygen species by cytochrome bc1. In analogy to the Qi site, we anticipate that the quinone binding sites in other enzymes may contain yet undetected semiquinones which interact magnetically with oxidized hemes upon progress of catalytic reactions.  相似文献   

6.
Adrenal cytochrome b561 (cyt b561), a transmembrane protein that shuttles reducing equivalents derived from ascorbate, has two heme centers with distinct spectroscopic signals and reactivity towards ascorbate. The His54/His122 and His88/His161 pairs furnish axial ligands for the hemes, but additional amino acid residues contributing to the heme centers have not been identified. A computational model of human cyt b561 (Bashtovyy, D., Berczi, A., Asard, H., and Pali, T. (2003) Protoplasma 221, 31-40) predicts that His92 is near the His88/His161 heme and that His110 abuts the His54/His122 heme. We tested these predictions by analyzing the effects of mutations at His92 or His110 on the spectroscopic and functional properties. Wild type cytochrome and mutants with substitutions in other histidine residues or in Asn78 were used for comparison. The largest lineshape changes in the optical absorbance spectrum of the high-potential (bH) peak were seen with mutation of His92; the largest changes in the low-potential (bL) peak lineshape were observed with mutation of His110. In the EPR spectra, mutation of His92 shifted the position of the g = 3.1 signal (bH) but not the g = 3.7 signal (bL). In reductive titrations with ascorbate, mutations in His92 produced the largest increase in the midpoint for the bH transition; mutations in His110 produced the largest decreases in ΔA561 for the bL transition. These results indicate that His92 can be considered part of the bH heme center, and His110 part of the bL heme center, in adrenal cyt b561.  相似文献   

7.
Ruth Hielscher  Carola Hunte  Petra Hellwig 《BBA》2009,1787(6):617-7786
Biochemical studies have shown that cardiolipin is essential for the integrity and activity of the cytochrome bc1 complex and many other membrane proteins. Recently the direct involvement of a bound cardiolipin molecule (CL) for proton uptake at center N, the site of quinone reduction, was suggested on the basis of a crystallographic study. In the study presented here, we probe the low frequency infrared spectroscopy region as a technique suitable to detect the involvement of the lipids in redox induced reactions of the protein. First the individual infrared spectroscopic features of lipids, typically present in the yeast membrane, have been monitored for different pH values in micelles and vesicles. The pKa values for cardiolipin molecule have been observed at 4.7 ± 0.3 and 7.9 ± 1.3, respectively. Lipid contributions in the electrochemically induced FTIR spectra of the bc1 complex from yeast have been identified by comparing the spectra of the as isolated form, with samples where the lipids were digested by lipase-A2. Overall, a noteworthy perturbation in the spectral region typical for the protein backbone can be reported. Interestingly, signals at 1159, 1113, 1039 and 980 cm− 1 have shifted, indicating the perturbation of the protonation state of cardiolipin coupled to the reduction of the hemes. Additional shifts are found and are proposed to reflect lipids reorganizing due to a change in their direct environment upon the redox reaction of the hemes. In addition a small shift in the alpha band from 559 to 556 nm can be seen after lipid depletion, reflecting the interaction with heme bH and heme c. Thus, our work highlights the role of lipids in enzyme reactivity and structure.  相似文献   

8.
In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemes b. The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on heme b ligand mutants of cytochrome bc1 in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functional in vivo. This reveals that cytochrome bc1 can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemes b in this cytochrome and in other membranous cytochromes b act as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential.  相似文献   

9.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

10.
We have analyzed the role of individual heme-ligating histidine residues for assembly of holo-cytochrome b6, and we show that the two hemes bL and bH bind in two subsequent steps to the apo-protein. Binding of the low-potential heme bL is a prerequisite for binding the high-potential heme bH. After substitution of His86, which serves as an axial ligand for heme bL, the apo-protein did not bind heme, while substitution of the heme bL-ligating residue His187 still allowed binding of both hemes. Similarly, after replacement of His202, one axial ligand to heme bH, binding of only heme bL was observed, whereas replacement of His100, the other heme bH ligand, resulted in binding of both hemes. These data indicate sequential heme binding during formation of the holo-cytochrome, and the two histidine residues, which serve as axial ligands to the same heme molecule (heme bL or heme bH), have different importance during heme binding and cytochrome assembly. Furthermore, determination of the heme midpoint potentials of the various cytochrome b6 variants indicates a cooperative adjustment of the heme midpoint potentials in cytochrome b6.  相似文献   

11.
The kinetics of single-electron injection into the oxidized nonrelaxed state (OH → EH transition) of the aberrant ba3 cytochrome oxidase from Thermus thermophilus, noted for its lowered efficiency of proton pumping, was investigated by time-resolved optical spectroscopy. Two main phases of intraprotein electron transfer were resolved. The first component (τ ∼ 17 μs) reflects oxidation of CuA and reduction of the heme groups (low-spin heme b and high-spin heme a3 in a ratio close to 50:50). The subsequent component (τ ∼ 420 μs) includes reoxidation of both hemes by CuB. This is in significant contrast to the OH → EH transition of the aa3-type cytochrome oxidase from Paracoccus denitrificans, where the fastest phase is exclusively due to transient reduction of the low-spin heme a, without electron equilibration with the binuclear center. On the other hand, the one-electron reduction of the relaxed O state in ba3 oxidase was similar to that in aa3 oxidase and only included rapid electron transfer from CuA to the low-spin heme b. This indicates a functional difference between the relaxed O and the pulsed OH forms also in the ba3 oxidase from T. thermophilus.  相似文献   

12.
A comprehensive study of the thermodynamic redox behavior of the hemes of the ba3 enzyme from Thermus thermophilus, a B-type heme-copper oxygen reductase, is presented. This enzyme, in contrast to those having a single type of heme, allows the B- and A-type hemes to be monitored separately by visible spectroscopy and the reduction potential of each heme to be determined unequivocally. The relative order of the midpoint reduction potentials of each center changed in the pH range from 6 to 8.4, and both hemes present a significant redox-Bohr effect. For instance, at pH 7, the midpoint reduction potentials of the hemes B and A3 are 213 mV and 285 mV, respectively, whereas at pH 8.4, the order is reversed: 246 mV for heme B and 199 mV for heme A3. The existence of redox anticooperativity was established by introducing a redox interaction parameter in a model of pairwise interacting redox centers.  相似文献   

13.
Nitrophorin 3 (NP3) is the only one of the four major NO-binding heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus (also called the Kissing Bug) for which it has not been possible to obtain crystals of diffraction quality for structure determination by X-ray crystallography. Thus we have used NMR spectroscopy, mainly of the hyperfine-shifted ferriheme substituent resonances, to learn about the similarities and differences in the heme pocket and the iron active site of NP3 as compared to NP2, which has previously been well-characterized by both X-ray crystallography and NMR spectroscopy. Only one residue in the heme pocket differs between the two, F27 of NP2 is Y27 for NP3; in both cases this residue is expected to interact strongly with the 2-vinyl side chain of the B heme rotational isomer or the 4-vinyl of the A heme rotational isomer. Both the high-spin (S = 5/2) aquo complex, NP3-H2O, and the low-spin (S = 1/2) N-methylimidazole (NMeIm) complex of NP3 have been studied. It is found that the chemical shifts of the protons of both forms are similar to those of the corresponding NP2 complexes, but with minor differences that indicate a slightly different angle for the proximal histidine (H57) ligand plane. The B heme rotational isomer is preferred by both NP3 and NP2 in both spin states, but to a greater extent when phenylalanine is present at position 27 (A:B = 1:8 for NP2, 1:6 for NP3-Y27F, 1:4 for NP3, and 1:3 for NP2-F27Y). Careful analysis of the 5Me and 8Me shifts of the A and B isomers of the two high-spin nitrophorins leads to the conclusion that the heme environment for the two isomers differs in some way that cannot be explained at the present time. The kinetics of deprotonation of the aquo ligand of the high-spin complexes of NP2 and NP3 are very different, with NP2 giving well-resolved high-spin aquo and “low-spin” hydroxo proton NMR spectra until close to the end of the titration, while NP3 exhibits broadened 1H NMR spectra indicative of an intermediate-rate of exchange on the NMR timescale between the two forms throughout the titration. The heme methyl shifts of NP2-OH are similar in magnitude and spread to those of NP2-CN, while those of metmyoglobin-hydroxo complexes are much larger in magnitude but not spread. It is concluded that the hydroxo complex of NP2 is likely S = 1/2 with a mixed(dxy)2(dxz, dyz)3/(dxy)1(dxz, dyz)4 electron configuration, while those of metMb-OH are likely S = 1/2,3/2 mixed spin systems.  相似文献   

14.
The reduction by sulfide of exogenous ubiquinone is compared to the reduction of cytochromes in chromatophores of Rhodobacter capsulatus. From titrations with sulfide values for Vmax of 300 and 10 moles reduced/mg bacteriochlorophyll a·h, and for Km of 5 and 3 M were estimated, for decyl-ubiquinone-and cytochrome c-reduction, respectively. Both reactions are sensitive to KCN, as has been found for sulfide-quinone reductase (SQR) in Oscillatoria limnetica, which is a flavoprotein. Effects of inhibitors interfering with quinone binding sites suggest that at least part of the electron transport from sulfide in R. capsulatus employs the cytochrome bc 1-complex via the ubiquinone pool.Abbreviations BChl a bacteriochlorophyll a - DAD diaminodurene - decyl-UQ decyl-ubiquinone - LED light emitting diode - NQNO 2-n-nonyl-4-hydroxyquinoline-N-oxide - PQ-1 plastoquinone 1 - SQR sulfide-quinone reductase (E.C. 1.8.5.'.) - UQ ubiquinone 10 - Qc the quinone reduction site on the cytochrome b 6 f/bc 1, complex (also termed Qi or Qr or Qn) - Qs the quinone reduction site on SQR - Qz quinol oxidation site on the b 6 f/bc 1, complex (also termed Qo or Qp)  相似文献   

15.
Membrane protein complexes can support both the generation and utilisation of a transmembrane electrochemical proton potential (Δp), either by supporting transmembrane electron transfer coupled to protolytic reactions on opposite sides of the membrane or by supporting transmembrane proton transfer. The first mechanism has been unequivocally demonstrated to be operational for Δp-dependent catalysis of succinate oxidation by quinone in the case of the dihaem-containing succinate:menaquinone reductase (SQR) from the Gram-positive bacterium Bacillus licheniformis. This is physiologically relevant in that it allows the transmembrane potential Δp to drive the endergonic oxidation of succinate by menaquinone by the dihaem-containing SQR of Gram-positive bacteria. In the case of a related but different respiratory membrane protein complex, the dihaem-containing quinol:fumarate reductase (QFR) of the ?-proteobacterium Wolinella succinogenes, evidence has been obtained that both mechanisms are combined, so as to facilitate transmembrane electron transfer by proton transfer via a both novel and essential compensatory transmembrane proton transfer pathway (“E-pathway”). Although the reduction of fumarate by menaquinol is exergonic, it is obviously not exergonic enough to support the generation of a Δp. This compensatory “E-pathway” appears to be required by all dihaem-containing QFR enzymes and results in the overall reaction being electroneutral. However, here we show that the reverse reaction, the oxidation of succinate by quinone, as catalysed by W. succinogenes QFR, is not electroneutral. The implications for transmembrane proton transfer via the E-pathway are discussed.  相似文献   

16.
Specific protein-lipid interactions have been identified in X-ray structures of membrane proteins. The role of specifically bound lipid molecules in protein function remains elusive. In the current study, we investigated how phospholipids influence catalytic, spectral and electrochemical properties of the yeast respiratory cytochrome bc1 complex and how disruption of a specific cardiolipin binding site in cytochrome c1 alters respiratory supercomplex formation in mitochondrial membranes. Purified yeast cytochrome bc1 complex was treated with phospholipase A2. The lipid-depleted enzyme was stable but nearly catalytically inactive. The absorption maxima of the reduced b-hemes were blue-shifted. The midpoint potentials of the b-hemes of the delipidated complex were shifted from − 52 to − 82 mV (heme bL) and from + 113 to − 2 mV (heme bH). These alterations could be reversed by reconstitution of the delipidated enzyme with a mixture of asolectin and cardiolipin, whereas addition of the single components could not reverse the alterations. We further analyzed the role of a specific cardiolipin binding site (CLi) in supercomplex formation by site-directed mutagenesis and BN-PAGE. The results suggested that cardiolipin stabilizes respiratory supercomplex formation by neutralizing the charges of lysine residues in the vicinity of the presumed interaction domain between cytochrome bc1 complex and cytochrome c oxidase. Overall, the study supports the idea, that enzyme-bound phospholipids can play an important role in the regulation of protein function and protein-protein interaction.  相似文献   

17.
Recently, we reported that YghZ from Escherichia coli functions as an efficient l-glyceraldehyde 3-phosphate reductase (Gpr). Here we show that Gpr co-purifies with a b-type heme cofactor. Gpr associates with heme in a 1:1 stoichiometry to form a complex that is characterized by a Kd value of 5.8 ± 0.2 μM in the absence of NADPH and a Kd value of 11 ± 1.3 μM in the presence of saturating NADPH. The absorbance spectrum of reconstituted Gpr indicates that heme is bound in a hexacoordinate low-spin state under both oxidizing and reducing conditions. The physiological function of heme association with Gpr is unclear, as the l-glyceraldehyde 3-phosphate reductase activity of Gpr does not require the presence of the cofactor. Bioinformatics analysis reveals that Gpr clusters with a family of putative monooxygenases in several organisms, suggesting that Gpr may act as a heme-dependent monooxygenase. The discovery that Gpr associates with heme is interesting because Gpr shares 35% amino acid identity with the mammalian voltage-gated K+ channel β-subunit, an NADPH-dependent oxidoreductase that endows certain voltage-gated K+ channels with hemoprotein-like, O2-sensing properties. To date the molecular origin of O2 sensing by voltage-gated K+ channels is unknown and the results presented herein suggest a role for heme in this process.  相似文献   

18.
A novel cytochrome ba complex was isolated from aerobically grown cells of the thermoacidophilic archaeon Acidianus ambivalens. The complex was purified with two subunits, which are encoded by the cbsA and soxN genes. These genes are part of the pentacistronic cbsAB-soxLN-odsN locus. The spectroscopic characterization revealed the presence of three low-spin hemes, two of the b and one of the as-type with reduction potentials of + 200, + 400 and + 160 mV, respectively. The SoxN protein is proposed to harbor the heme b of lower reduction potential and the heme as, and CbsA the other heme b. The soxL gene encodes a Rieske protein, which was expressed in E. coli; its reduction potential was determined to be + 320 mV. Topology predictions showed that SoxN, CbsB and CbsA should contain 12, 9 and one transmembrane α-helices, respectively, with SoxN having a predicted fold very similar to those of the cytochromes b in bc1 complexes. The presence of two quinol binding motifs was also predicted in SoxN. Based on these findings, we propose that the A. ambivalens cytochrome ba complex is analogous to the bc1 complexes of bacteria and mitochondria, however with distinct subunits and heme types.  相似文献   

19.
20.
MOA-stilbene is known to be a specific inhibitor of the Qo site of mammalian cytochrome bc 1 complex. We show that it also binds to the chloroplast cytochrome bf complex. Binding to the reduced enzyme induces a red-shift of the Soret and visible absorption bands of the haems b. Steady state and single turnover experiments with thylakoid membranes show that MOA-stilbene promotes additional oxidant-induced reduction of the b haems and slows their subsequent dark reoxidation. In single turnover experiments, the associated slow phase of the carotenoid bandshift at 518 nm is only partially decreased in apparent extent and rate. These and other effects are similar to those produced by NQNO, a Qi site effector, and by analogy indicate that MOA-stilbene should also be primarily a Qi-site effector of the cytochrome bf complex. MOA-stilbene has less effect on other parts of the photosynthetic chain. This confers an important advantage on MOA-stilbene in that its effects on the cytochrome bf complex can be studied by using Photosystem II to activate turnover. Myxothiazol displays effects on the cytochrome bf complex which are similar to, but much weaker than, those of MOA-stilbene.A Q cycle-based model of turnover of the cytochrome bf complex is presented, which can account for several unusual features of kinetic behaviour.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - duroquinol 2,3,5,6-tetramethyl-p-benzohydroquinone - Ehx Ambient potential at pHx versus SHE - Emx Midpoint potential at pH x versus SHE - haem b H the higher potential haem b of cytochrome b, thought to be associated with the quinone reduction site, Qi, and sometimes termed haem b n - haem b L the lower potential haem of cytochrome b, thought to be associated with the quinol oxidation site, Qo, and sometimes termed haem b p - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - MOA-stilbene E--methoxyacrylate-stilbene or (E,E)-methyl 3-methoxy-2-(styrylphenyl)propenoate - NQNO 2-n-nonyl-4-hydroxyquinoline-N-oxide - QB (site) the (binding site of the) secondary quinone acceptor of Photosystem II - Qo site the quinol oxidation site and site of proton output of the bc and bf complexes (also termed the Qz or Qp site) - Qi site the quinone reduction site and site of proton input of the bc and bf complexes (also termed the Qc, Qr or Qn site) - SHE Standard Hydrogen Electrode  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号